As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Morphological operations on temporal intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/4/397-412
Title of paper: Morphological operations on temporal intuitionistic fuzzy sets
Author(s):
R. Parvathi
Department of Mathematics, Vellalar College for Women, Erode, Tamilnadu, India
paarvathis@rediffmail.com
C. Yuvapriya
PG Department of Mathematics, Vellalar College for Women, Erode, Tamilnadu, India
yuvapriya.c@gmail.com
Presented at: International Workshop on Intuitionistic Fuzzy Sets, founded by Prof. Beloslav Riečan, 2 December 2022, Banská Bystrica, Slovakia
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 397–412
DOI: https://doi.org/10.7546/nifs.2022.28.4.397-412
Download:  PDF (265  Kb, File info)
Abstract: This paper is devoted to develop the theory of temporal intuitionistic fuzzy sets. The matrix representation of a TIFS is also introduced for easy symbolization. In addition to a few basic operations, length of a TIFS and its properties are discussed. Morphological operations on temporal intuitionistic fuzzy sets are defined using (i) mathematical operations, (ii) structuring element, (iii) inclusion indicators, and (iv) temporal intuitionistic fuzzy divergence and verified with suitable examples.
Keywords: Temporal intuitionistic fuzzy sets, Cardinality of a TIFS, Morphological operations.
AMS Classification: 03B20, 03B44.
References:
  1. Akpinar, S., & Alpaslan F. (2017). A novel optical flow-based representation for temporal video segmentation. Turkish Journal of Electrical Engineering and Computer Sciences, 25, 3983–3993.
  2. Alcantud, J. C. R., Khameneh, A. Z., & Kilicman, A. (2020). Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information. Information Sciences, 514, 106–117.
  3. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia deposed in Central Science Technical Library of Bulgarian Academy of Sciences, 1697, 84.
  4. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  5. Atanassov, K. T. (1990). Remark on a temporal intuitionistic fuzzy logic. Second Scientific Session of the “Mathematical Foundation Artificial Intelligence” Seminar, Sofia, 30 March 1990, Preprint IM-MFAIS-1-90, 1–5.
  6. Atanassov, K. T. (1991). Temporal intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 44(7), 5–7.
  7. Atanassov, K. T. (1998). Generalized Nets in Artificial Intelligence. Volume 1: Generalized Nets and Expert Systems. “Prof. Marin Drinov” Academic Publishing House, Sofia.
  8. Atanassov. K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg.
  9. Atanassov, K. T. (2004). On some temporal intuitionistic fuzzy operators. Kacprzyk, J., & Atanassov, K. (Eds.) Proceedings of the Eighth International Conference on Intuitionistic Fuzzy Sets, Sofia, 20 June 2004, 29–32.
  10. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  11. Atanassova, V., & Sotirov, S. (2012). A new formula for de-i-fuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 18(3), 49–51.
  12. Ban, A., Kacprzyk, J., & Atanassov, K. (2008). On de-I-fuzzification of intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 61(12), 1535–1540.
  13. Bouchet, A., Montes, S., Ballarin, V., & Diaz, I. (2020). Intuitionistic fuzzy set and fuzzy mathematical morphology applied to color leukocytes segmentation. Signal, Image and Video Processing, 14(3), 557–564.
  14. Burillo, P., Frago, N., & Fuentes, R. (2003). Fuzzy morphological operators in image processing. Mathware and Soft Computing, 10(2/3), 85–100.
  15. Hanmandlu, M., Jha, D., & Sharma, R. (2000). Color image enhancement by fuzzy intensification. Pattern Recognition Letters, 24(1–3), 81–87.
  16. Kerre, E. E., & Nachtegael, M. (Eds.) (2000). Fuzzy Techniques in Image Processing, Physica-Verlag, Heidelberg.
  17. Kutlu, F. A., Atan, O., & Bilgin, T. U. (2016). Distance measure, similarity measure, entropy and inclusion measure for temporal intuitionistic fuzzy sets. Proceedings of 3rd International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, 130–148.
  18. Parvathi, R., & Atanassov, K. T. (2008). Grayscale morphological operators on intuitionistic fuzzy sets of second type. Advances in Fuzzy Sets and Systems, 3(1), 87–97.
  19. Parvathi, R., & Geetha, S. P. (2009). A note on properties of temporal intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 15(1), 42–48.
  20. Parvathi, R., & Radhamani, C. (2016). Multi-parameter temporal intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 22(1), 35–47.
  21. Parvathi, R., & Yuvapriya, C. (2022). Operations on temporal intuitionistic fuzzy sets. Annals of Fuzzy Mathematics and Informatics, 24(2), 137–146.
  22. Radhamani, C. (2018). Entropy Measure of Temporal Intuitionistic Fuzzy Sets. International Journal of Fuzzy Mathematical Archive, 15(1), 91–103.
  23. Radhamani, C. (2020). Crispification of temporal intuitionistic fuzzy sets. In AIP Conference Proceedings, AIP Publishing LLC, 2277(1), 090014.
  24. Radhika, C., & Parvathi, R.(2016). Defuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 22(5), 19–26.
  25. Yılmaz, S., & Çuvalcioğlu, G. (2014). On level operators for temporal intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 20(2), 6–15.
  26. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353/
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.