As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy normal bi-topological space-approach of intuitionistic fuzzy open sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/3/230-241
Title of paper: Intuitionistic fuzzy normal bi-topological space-approach of intuitionistic fuzzy open sets
Author(s):
Saikh Shahjahan Miah
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
skhshahjahan@gmail.com
Jewel Miah
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
ranajewel29889@gmail.com
Ruhul Amin
Department of Mathematics, Faculty of Science, Begum Rokeya University, Rangpur-5404, Bangladesh
ruhulamin@brur.ac.bd
Nigar Sultana
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
Department of Mathematics, North Carolina State University, Raleigh, NC, United States
nsultan4@ncsu.edu
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 3, pages 230–241
DOI: https://doi.org/10.7546/nifs.2024.30.3.230-241
Download:  PDF (231  Kb, File info)
Abstract: This paper provides nine newly proposed notions of intuitionistic fuzzy normal bi-topological spaces (IFNBTS) based on the concept of most explored field fuzzy bi-topological spaces using intuitionistic fuzzy open sets (IFOS). Further, the authors establish implications among the prescribed notions and show that these notions are good extensions of normal and fuzzy normal bi-topological spaces. Finally, the authors study the image and pre-image of IFNBTS, demonstrating that they are also IFNBTS in the sense of IFOS.
Keywords: Intuitionistic fuzzy set (IFS), Intuitionistic fuzzy topological space (IFTS), Intuitionistic fuzzy bi-topological space, Intuitionistic fuzzy normal bi- topological space (IFNBTS)
AMS Classification: 03E72, 54A40, 94D05.
References:
  1. Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On intuitionistic fuzzy T0 spaces. Journal of Bangladesh Academy of Sciences, 38(2), 197–207.
  2. Ahmed, E., Hossain, M. S., & Ali, D. M. (2015). On intuitionistic fuzzy R1-spaces. Journal of Mathematical and Computational Science, 5(5), 681–693.
  3. Al-Qubati, A. A. Q. (2015). On b-separation axioms in intuitionistic fuzzy topological spaces. International Journal of Mathematics Trends and Technology, 21(2), 83–93.
  4. Al-Qubati, A. A. Q. (2018). On intuitionistic fuzzy β and β∗-normal spaces. International Journal of Mathematical Analysis, 12(11), 517–531.
  5. Amin, R., Hossain, M. S., & Miah, S. S. (2020). Fuzzy pairwise regular bitopological spaces in quasi-coincidence sense.J. Bangladesh Acad. Sci., 44(2), 139–143.
  6. Amin, R., Islam, R., Shaha, S. K., & Miah, S. S. (2022). Some properties of T0 fuzzy soft topological spaces in quasi-coincidence sense. Journal of Mechanics of Continua and Mathematical Sciences, 17(4), 8–20.
  7. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. Proceedings of VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  8. Atanassov, K. T. (1988). Review and new results on intuitionistic fuzzy sets. Mathematical Foundations of Artificial Intelligence Seminar, Sofia, Preprint IM-MFAIS1-88. Reprinted: Int. J. Bioautomation, 2016, 20(S1), S7–S16.
  9. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  10. Atanassov K. (1992). Remarks on the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 51(1), 117–118.
  11. Atanassov, K. T., & Stoeva, S. (1983). Intuitionistic fuzzy sets. In: Polish Symposium on Interval & Fuzzy Mathematics, Poznan, 1983, 23–26.
  12. Bayhan, S., & Çoker, D. (1996). On fuzzy separation axioms in intuitionistic fuzzy topological spaces. BUSEFAL, 67, 77–87.
  13. Bayhan, S., & Çoker, D. (2005). Pairwise separation axioms in intuitionistic topological spaces. Hacettepe Journal of Mathematics and Statistics, 34S, 101–114.
  14. Chang, C. L. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182–190.
  15. Çoker, D. (1996). A note on intuitionistic sets and intuitionistic points. Turkish Journal of Mathematics, 20(3), 343–351.
  16. Çoker, D. (1996). An introduction to fuzzy subspace in intuitionistic fuzzy topological spaces. Journal of Fuzzy Mathematics, 4, 749–764.
  17. Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems, 88(1), 81–89.
  18. Çoker, D., & Bayhan, S. (2001). On separation axioms in intuitionistic topological spaces. International Journal of Mathematics and Mathematical Sciences, 27(10), 621–630.
  19. Ejegwa, P. A., & Onasanya, B. O. (2018). Improved intuitionistic fuzzy composite relation and its application to medical diagnostic process. Notes on Intuitionistic Fuzzy Sets, 25(1), 43–58.
  20. George, J. B., & Jose, S. (2019). Medical diagnosis in intuitionistic fuzzy context. Notes on Intuitionistic Fuzzy Sets, 25(1), 59–63.
  21. Islam, R., Hossain, M. S., & Hoque, M. F. (2020). A study on intuitionistic L-fuzzy T1 spaces. Notes on Intuitionistic Fuzzy Sets, 26(3), 33–42.
  22. Lee, S. J., & Lee, E. P. (2000). The category of intuitionistic fuzzy topological spaces. Bulletin of the Korean Mathematical Society, 37(1), 63–76.
  23. Lupianez, F. G. (2004). Separation in intuitionistic fuzzy topological spaces. International Journal of Pure and Applied Mathematics, 17(1), 29–34.
  24. Mahbub, M. A., Hossain, M. S., & Hossain, M. A. (2021). Connectedness concept in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 27(1), 72–82.
  25. Miah, S. S., & Jumur, B. N. (2024). Intuitionistic fuzzy R0 bitopological space: An in-depth exploration. GANIT: Journal of Bangladesh Mathematical Society, 44(1), 23–28.
  26. Miah, S. S., & Kabir, H. (2024). Study on intuitionistic fuzzy Hausdorff (T2) bitopological spaces: Theoretical insights. J. Bangladesh Acad. Sci., 48(1), 51–59.
  27. Miah, S. S., Lily, F. T., Amin, M. R., Karim, R., & Akbar, M. A. (2024). Separation axioms on fuzzy neutrosophic bitopological spaces using fuzzy neutrosophic open sets. Journal of Umm Al-Qura University for Applied Sciences, DOI: https://doi.org/10.1007/s43994-024-00173-7.
  28. Miah, S. S., Ronjon, R., & Sultana, S. (2024). An in-depth exploration of intuitionistic fuzzy T0 in the context of bitopology. Notes on Intuitionistic Fuzzy Sets, 30(1), 66–76.
  29. Prova, T. T., & Hossain, M. S. (2020). Intuitionistic fuzzy based regular and normal spaces. Notes on Intuitionistic Fuzzy Sets, 26(4), 53–63.
  30. Saadati, R., & Park, J. H. (2006). On the intuitionistic fuzzy topological spaces. Chaos, Solitons & Fractals, 27(2), 331–344.
  31. Singh, A. K., & Srivastava, R. (2012). Separation axioms in intuitionistic fuzzy topological spaces. Advances in Fuzzy Systems, 2012, Article ID 604396.
  32. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.