As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Improved intuitionistic fuzzy composite relation and its application to medical diagnostic process

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/25/1/43-58
Title of paper: Improved intuitionistic fuzzy composite relation and its application to medical diagnostic process
Author(s):
P. A. Ejegwa
Department of Mathematics, Statistics and Computer Science, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria
ocholohi@gmail.com
B. O. Onasanya
Department of Mathematics, Faculty of Science, University of Ibadan, Nigeria
babtu2001@yahoo.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 25 (2019), Number 1, pages 43–58
DOI: https://doi.org/10.7546/nifs.2019.25.1.43-58
Download:  PDF (212  Kb, File info)
Abstract: In this paper, we study the De et al.'s approach for the application of intuitionistic fuzzy relation (i.e., max-min-max composite relation), and improve the approach for better output. The validity of the improved intuitionistic fuzzy composite relation is carried out in comparison to De et al.’s approach using numerical experiments. It is shown that the improved intuitionistic fuzzy composite relation yields a better output. Finally, an application of the improved approach to medical diagnostic process is carried out using a hypothetical medical database. This improved intuitionistic fuzzy composite relation could be used as a sustainable approach in applying intuitionistic fuzzy sets to other real-life decision-making problems.
Keywords: Fuzzy set, Intuitionistic fuzzy set, Intuitionistic fuzzy relation, Intuitionistic fuzzy medical diagnosis.
AMS Classification: 20N20, 03E72.
References:
  1. Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
  3. Atanassov, K. T. (1989). More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33, 37– 45.
  4. Atanassov, K. T. (1994). New operations defined over intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(2), 137–142.
  5. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg.
  6. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
  7. Atanassov, K. T. & Gargov, G. (1990). Intuitionistic fuzzy logic, C. R. Acad. Bulgare Sc., 43 (3), 9–12.
  8. Atanassov, K. T. & Georgiev, C. (1993). Intuitionistic fuzzy Prolog, Fuzzy Sets and Systems, 53, 121–128. 56
  9. Biswas, R. (1997). Intuitionistic fuzzy relations, Bull. Sous. Ens. Flous. Appl. (BUSEFAL), 70, 22–29.
  10. Burillo, P. & Bustince, H. (1995). Intuitionistic fuzzy relations (Part 1), Mathware Soft Comput., 2, 5–38.
  11. Burillo, P. & Bustince, H. (1996). Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, 78, 293–303.
  12. Davvaz, B. & Sadrabadi, E. H. (2016). An application of intuitionistic fuzzy sets in medicine, Int. J. Biomath., 9 (3), 1650037.
  13. De, S. K., Biswas, R. & Roy, A. R. (2000). Some operations on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 114, 477–484.
  14. De, S. K., Biswas, R. & Roy, A. R. (2001). An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Systems, 117 (2), 209–213.
  15. De Baets, B. & Etienne, E. K. (1993). Fuzzy relational compositions, Fuzzy Sets and Systems, 60, 109–120.
  16. De Baets, B. & Etienne, E. K. (1994). Fuzzy relations and applications, Adv. Electron. Electron. Phys., 89, 255–324.
  17. Deschrijver, G. & Etienne, E. K. (2003). On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems, 136, 333–361.
  18. Ejegwa, P. A. (2015). Intuitionistic fuzzy sets approach in appointment of positions in an organization via max-min-max rule, Global J. Sci. Frontier Research: F Math. Decision Sci., 15 (6), 1–6.
  19. Ejegwa, P. A. & Modom, E. S. (2015). Diagnosis of viral hepatitis using new distance mea- sure of intuitionistic fuzzy sets, Intern. J. Fuzzy Mathematical Archive, 8 (1), 1–7.
  20. Ejegwa, P. A., Akubo, A. J. & Joshua, O. M. (2014). Intuitionistic fuzzzy sets in career determination, J. Info. Computing Sci., 9 (4), 285–288.
  21. Ejegwa, P. A., Onoja, A. M. & Emmanuel, I. T. (2014). A note on some models of intuition- istic fuzzy sets in real life situations, J. Global Research Math. Arch., 2 (5), 42–50.
  22. Ejegwa, P. A., Onoja, A. M. & Chukwukelu, S. N. (2014). Application of intuitionistic fuzzy sets in research questionnaire, J. Global Research Math. Arch., 2 (5), 51–54.
  23. Ejegwa, P. A., Tyoakaa, G. U. & Ayenge, A. M. (2016). Application of intuitionistic fuzzy sets in electoral system, Intern. J. Fuzzy Mathematical Archive, 10 (1), 35–41. 57
  24. Sanchez, E. (1976). Resolution of composition fuzzy relation equations, Information and Control, 30, 38–48.
  25. Szmidt, E. & Kacprzyk, J. (2001). Intuitionistic fuzzy sets in some medical applications, Notes on Intuitionistic Fuzzy Sets, 7 (4), 58–64.
  26. Szmidt, E. & Kacprzyk, J. (2002). An intuitionistic fuzzy set based approach to intelligent data analysis: anapplicationtomedicaldiagnosis.RecentAdvancesinIntelligentParadigms and Applications, Springer, Berlin, 57–70.
  27. Szmidt, E. & Kacprzyk, J. (2004). Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 10 (4), 61–69.
  28. Szmidt, E. & Kacprzyk, J. (2005). A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. Lecture Notes in Artificial Intelligence, Vol. 3070, Springer, Berlin, 388–393.
  29. Todorova, L., Atanassov, K. T., Hadjitodorov, S. & Vassilev, P. (2007). On an intuitionistic fuzzy approach for decision-making in medicine (Part 1), Int. J. Bioautomation, 6, 92–101.
  30. Todorova, L., Atanassov, K. T., Hadjitodorov, S. & Vassilev, P. (2007). On an intuitionistic fuzzy approach for decision-making in medicine (Part 2), Int. J. Bioautomation, 7, 64–69.
  31. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.