Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at

Issue:A study on intuitionistic L-fuzzy T1 spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Title of paper: A study on intuitionistic L-fuzzy T1 spaces
R. Islam
Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh
M. S. Hossain
Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
M. F. Hoque
Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 26 (2020), Number 3, pages 33–42
Download: Download-icon.png PDF (227  Kb, Info)
Abstract: The paper yields some new conjectures of intuitionistic lattice fuzzy T1 spaces underlying to the concepts of intuitionistic fuzzy topological spaces. These conjectures convey some appreciable and intriguing properties as “Good extension” and “Hereditary” properties. Despite these, all suppositions sustain under one-one, onto, and continuous mapping.
Keywords: Intuitionistic L-fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic L-fuzzy topology.
AMS Classification: 03E72, 94D05.
  1. Ahmed, E., Hossain, M. S., & Muslim, A. (2014). On Intuitionistic Fuzzy T1-Spaces, J. of Physical Sci. 19, 59–66.
  2. Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6. Available online: .
  3. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
  4. Atanassov, K. T. (1988). Review and new results on intuitionistic fuzzy sets, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS1-88. Reprinted: Int. J. Bioautomation, 2016, 20(S1), S7–S16. Available online: .
  5. Atanassov, K. T., & Stoeva, S. (1983). Intuitionistic fuzzy sets, in: Polish Symp.. On Interval & Fuzzy Mathematics, Poznan, 23–26.
  6. Atanassov, K. T. & Stoeva, S. (1984). Intuitionistic L-fuzzy sets, in: R. Trappl, Ed., Cybernetics and System Research Vol. 2 (Elsevier, Amsterdam), 539–540.
  7. Bayhan, S., & Coker, D (2005). Pairwise Separation axioms in intuitionistic topological Spaces, Hacettepe Journal of Mathematics and Statistics, 34, 101–114.
  8. Chang, C. L. (1968). Fuzzy topological spaces, J. Math. Anal Appl., 24, 182–192.
  9. Coker, D. (1996). A note on intuitionistic sets and intuitionistic points, TU J. Math., 20 (3), 343–351.
  10. Coker, D. (1996). An introduction to fuzzy subspace in intuitionistic fuzzy topological space, J. Fuzzy Math., 4, 749–764.
  11. Coker, D. (1997). An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems, 88, 81–89.
  12. Coker, D. (2000). An introduction to intuitionistic topological space, BUSEFAL, 81, 51–56.
  13. Ejegwa, P. A., Akubo, A. J., & Joshua, O. M. (2014). Intuitionistic fuzzy sets in career determination, Journal of Information and Computing Science, 9 (4), 285–288.
  14. Ejegwa, P. A., Onoja, A. M., & Emmanuel, I. T. (2014). A note some models of intuitionistic fuzzy sets in real life situations, Journal of Global Research in Mathematical Archives, 2 (5), 42–50.
  15. Goguen, J. A. (1967). L-fuzzy sets, J. Math. Anal. Appl., 18, 145–174.
  16. Islam, R., & Hossain, M. S. (2018). Some Features of Intuitionistic L–R1 Spaces, Journal of Scientific Research, 10 (1), 1–9.
  17. Islam, R., Hossain, M. S., & Amin, R. (2018). Some Properties of Intuitionistic L–T0 Spaces, Journal of Fuzzy Set Valued Analysis, 2018 (2), 77–85.
  18. Islam, M., Hossain, M. S., & Asaduzzaman, M. (2018). Level separation on intuitionistic fuzzy T1 space, J. Bangladesh Acad. Sci., 42 (1), 73–85.
  19. Lee, S. J., & Lee, E. P. (2000). The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc., 37, 63–76.
  20. Min, W.-K., & Park, C.-K. (2005). Some results On Intuitionistic fuzzy Topological Spaces defined by Intuitionistic gradation of Openness, Commun. Korean Math. Soc., 20, 791.
  21. Palaniappan, N., Arjunan, K., & Palanivelrajan, M. (2008). A study on intuitionistic L-fuzzy subrings, Notes on Intuitionistic Fuzzy Sets, 14 (3), 5–10. Available online:
  22. Szmidt, E., & Kacprzyk, J. (2001). Intuitionistic fuzzy sets in some medical applications, Notes on Intuitionistic Fuzzy Sets, 7 (4), 58–64.
  23. Szmidt, E., & Kacprzyk, J. (2004). Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 10 (4), 61–69.
  24. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.