From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
shortcut
|
http://ifigenia.org/wiki/issue:nifs/2/3/20-21
|
Title of paper:
|
An intuitionistic fuzzy interpretation of the basic axiom of the resolution
|
Author(s):
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 2 (1996) Number 3, pages 20—21
|
Download:
|
PDF (1444 Kb, File info)
|
Abstract:
|
The expression [math]\displaystyle{ ((a \lor b)) \& ((\neg a \lor c)) \supset (b \lor c) }[/math] is called "the basic axiom of the resolution" (see [1]). Obviously, it is a tautology in the first order logic sense (see, e.g., [2]). Here we shall discuss its interpretation in the terms of the Intuitionistic Fuzzy Logic (IFL).
|
References:
|
- Schalkoff R., Artificial Intelligence, McGraw-Hill Book Co., New York, 1990.
- Mendelson E., Introduction to mathematical logic, Princeton, NJ: D. Van Nostrand, 1964.
- Atanassov K. Two variants of intuitonistic fuzzy prepositional calculus. Preprint IM-MFAIS-5-88, Sofia, 1988.
- Atanassov K., Gargov G. Intuitionistic fuzzy logic. Compt. rend. Acad. bulg. Sci., Tome 43, N. 3, 1990, 9-12.
- Gargov G., Atanassov K., Two results in intuitionistic fuzzy logic. Compt. rend. Acad. bulg. Sci., Tome 45, N. 12, 29-31.
- Gargov G., Atanassov K., On the intuitionistic fuzzy logic operations, Notes on IFS, Vol. 1, No. 1, 1-4.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|