Title of paper:
|
Z2-graded intuitionistic L-fuzzy q-deformed quantum subspaces of Aq
|
Author(s):
|
Marzieh Mostafavi
|
Department of Mathematics, University of Qom, Qom, Iran
|
mmostafavi14279@gmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 2, pages 93–112
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.2.93-112
|
Download:
|
PDF (247 Kb, File info)
|
Abstract:
|
In this paper, assuming that ⟨L, ≤〉 is a lattice set with a few specific conditions, intuitionistic L-fuzzy subalgebras, intuitionistic L-fuzzy subcoalgebras and intuitionistic L-fuzzy left (right) coideals are defined and the properties of intuitionistic L-fuzzy subcoalgebras under homomorphisms of coalgebras are investigated. Duality of intuitionistic L-fuzzy subalgebras and duality of intuitionistic L-fuzzy subcoalgebras are also discussed. Intuitionistic L-fuzzy subbialgebras as well as intuitionistic L-fuzzy Hoph subalgebras are studied. Intuitionistic L-fuzzy quantum subsets of kq[x, y] are established and also Z2-graded intuitionistic L-fuzzy q-deformed quantum subspaces of Aq are introduced.
|
Keywords:
|
Intuitionistic L-fuzzy subcoalgebras, Intuitionistic L-fuzzy Hoph subalgebras, Z2-graded intuitionistic L-fuzzy q-deformed quantum subspaces.
|
AMS Classification:
|
08A72, 16T05, 17B05.
|
References:
|
- Abe, E. (1980). Hoph Algebras. Cambridge Tracts in Mathematics. Cambridge University Press.
- Akram, M. (2008). Intuitionistic fuzzy Lie ideals of Lie algebras. International Journal of Fuzzy Mathematics, 16(4), 991–1008.
- Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal Bioautomation, 2016, 20(S1), S1–S6. (in English).
- Atanassov, K. T. & Stoeva, S. (1983) Intuitionistic fuzzy sets, Polish Symposium on Interval & Fuzzy Mathematics, Poznan, Aug. Proc. 23-26.
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61, 137–142.
- Atanassov, K. T. (2012). Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag, Berlin.
- Atanassov, K. T., & Stoeva, S. (1984). Intuitionistic L-fuzzy sets. In: Trappl, R. (Ed.), Cybernetics and Systems Research 2, Elsevier Sci. Publ., Amsterdam), 539–540.
- Banerjee, B., & Basnet, D. (2003). Intuitionistic fuzzy subrings and ideals. Journal of Fuzzy Mathematics, 11(1), 139–155.
- Biswas, R. (1989). Intuitionistic fuzzy subgroups. Mathematical Forum, 10, 37–46.
- Brown, K., & Goodearl, K. R. (2002). Lectures on Algebraic Quantum Groups. Birkhauser.
- Chen, W. (2009). Fuzzy subcoalgebras and duality. Bulletin of the Malaysian Mathematical Sciences Society (2), 32(3), 283–294.
- Dascalescu, S., Nastasescu, C., & Raianu, S. (2001). Hopf Algebras, Dekker, New York.
- Davvaz, B., Dudek, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hν-submodules. Information Sciences, 176, 285–300.
- Drinfeld, V. G. (1986). Quantum groups. Proceedings International Congress of Mathematicians, Berkeley, 798–820.
- Dvurecenskij, A., & Chovanec, F. (1988). Fuzzy quantum spaces and compatibility. International Journal of Theoretical Physics, 27(9), 1069–1082.
- El-Badawy Yehia, S. (1996). Fuzzy ideals and fuzzy subalgebras of Lie algebras. Fuzzy Sets and Systems, 80, 237–244.
- Faddeev, L. D., Reshetikhin, N. Y., & Takhtajan, L. A. (1989). Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1(1), 178–206.
- Gargov, G., & Atanassov, K. T. (1992). Two results in intuitionistic fuzzy logic. Comptes rendus de l’Academie bulgare des Sciences, 45(12), 29–31.
- Gargov, G., & Atanassov, K. T. (1995). On the intuitionistic fuzzy logic operations. Notes on Intuitionistic Fuzzy Sets, 1(1), 1–4.
- Gargov, G., & Atanassov, K. T. (1996). An intuitionistic fuzzy interpretation of the basic axiom of the resolution. Notes on Intuitionistic Fuzzy Sets, 2(3), 20–21.
- Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic fuzzy ideals of a ring. Journal of the Korean Society of Mathematical Education Series B-pure and Applied Mathematics, 12(3), 193–209.
- Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Mathematical Journal, 25(1), 19–41.
- Kruszynski, P., & Woronowicz, S. L. (1982). A noncommutative Gelfand–Naimark theorem. Journal of Operator Theory, 8, 361–389.
- Manin, Y. I. (1988). Quantum Groups and Non-Commutative Geometry. Centre de Recherches Mathematiques, Universit ´ e de Montr ´ eal. ´
- Manin, Y. I. (1989). Multiparametric quantum deformation of the general linear supergroup. Communications in Mathematical Physics, 123, 163–175.
- Mostafavi, M. (2020). C∞ L-Fuzzy manifolds with gradation of openness and C∞ LG-fuzzy mappings of them. Iranian Journal of Fuzzy Systems, 17(6), 157–174.
- Mostafavi, M. (2022). Quantum Partial Derivatives of Q-analytic Functions On Quantum Superspace Aq. International Journal of Open Problems in Computer Science and Mathematics, 15(1), 81–93.
- Navara, M. (1994). Algebraic approach to fuzzy quantum spaces. Demonstratio Mathematica, XXVII (3–4), 589–600.
- Pykacz, J. (2007). Quantum structures and fuzzy set theory. In: Engesser, K., Gabbay, D. M., & Lehmann, D. (Eds.), Handbook of Quantum Logic and Quantum Structures, 55–74.
- Vaksman, L. L., & Soibelman, J. S. (1988). Algebra of functions on quantum group SU(2). Functional Analysis and Its Applications, 22(3), 170–181.
- Vallin, J. M. (1985). C∗-algebres de Hopf et C∗-algebres de Kac. Proceedings of the London Mathematical Society, 50(3), 131–174.
- Wachter, H. (2007). Analysis on q-deformed quantum spaces. International Journal of Modern Physics A, 22(1), 95–164.
- Woronowicz, S. L. (1987). Compact matrix pseudogroups. Communications in Mathematical Physics, 111(4), 613–665.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|