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1 Introduction

In the works of Faddeev et al. [18] and Drinfeld [15], quantum groups were introduced and a new
class of Hopf algebras was constructed. Vallin [32] developed Hopf C∗-algebra theory. Recently,
different approaches are contained in the papers of Vaksman and Soibelman [31], Kruszynski
and Woronowicz [24], and Brown and Goodearl [11]. A compact matrix pseudo group is defined
in [34] as a non-commutative compact space endowed with a group structure.

Manin [25] defined quantum plane as a particular start point to construct quantum groups
and introduced multiparametric quantum deformation of the general linear supergroup in [26]
and later Wachter [33] discussed analysis on q-deformed quantum spaces. Recently the author
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[28] defined quantum partial derivatives of Q-analytic functions on quantum superspace Aq and
investigated relations between them and some automorphisms of Oq. For more details on Hoph
algebras, we refer the readers to [1] and [13].

In 1983, Atanassov [3], introduced the concept of intuitionistic fuzzy sets as a generalization
of the concept of fuzzy sets defined by Zadeh [35], to overcome the difficulties in dealing with
uncertainties. In intuitionistic fuzzy sets, computational complexity is more as two types of uncer-
tainties are used. But, for obtaining better results, where uncertainty present is more, especially
in diagnosis based on medical images, accurate result is very much important, compromising the
computational complexity. Later, with Stoeva, Atanassov [8] further generalized that concept to
an intuitionistic L-fuzzy set, where L stands for some lattice coupled with a special negation.
He also published some results himself in [5, 6, 19–21]. Many other mathematicians have been
generalized the concept of intuitionistic fuzzy sets, such as Biswas [10], El-Badawy Yehia [17],
Hur et al. [22, 23], Banerjee and Basnet [9], Davvaz and Dudek [14] and Akram [2]. Atanassov
provided a comprehensive, complete coverage of virtually all results obtain up to 2012 in the area
of the theory and applications of intuitionistic fuzzy sets in the book [5].

So far algebraic approches to fuzzy quantum spaces and compatibility [16], fuzzy quantum
spaces [29], quantum structures and fuzzy set theory [30] and fuzzy subcoalgebras and duality
[12] have been established and discussed but no intuitionistic L-fuzzification of q-deformed
quantum space has been done. The goal of this paper is to introduce the concept of Z2-graded
intuitionisticL-fuzzy q-deformed quantum subspaces ofAq. In order to discuss theL-fuzzification
of the concepts of geometry, we estabilshed the concept ofC∞ L-fuzzy manifold withL-gradation
of openness in [27].

We proceed as follows. In Section 2, we recall the definition of intuitionistic L-fuzzy vector
subspaces and dual of them. In Section 3, we discuss intuitionistic L-fuzzy subcoalgebras as well
as intuitionistic L-fuzzy Hoph subalgebras. In Section 4, intuitionistic L-fuzzy quantum subsets
of kq[x, y] and in Section 5, Z2-graded intuitionistic L-fuzzy q-deformed quantum subspaces of
Aq are introduced and some interesting examples are given.

2 Preliminaries

We assume that L = 〈L,≤〉 is a complete lattice set (or a complete chain, or a complete ordered
semi-ring, etc.) with an (unary) involutive order reversing operation N : L→ L.

Definition 2.1 (see [5]). Let M be a nonempty set. An intuitionistic L-fuzzy subset B of M is
defined as an object having the form B = {〈x, µ

B
(x), ν

B
(x)〉 | x ∈ M} or B = (µ

B
, ν

B
), where

the functions µ
B

: M → L and ν
B

: M → L denote the degree of membership and the degree of
non-membership of each element x ∈ M to the set B, respectively, and µ

B
(x) ≤ N(ν

B
(x)) for

each x ∈M .

Definition 2.2 (see [12]). Let V be a k-vector space where k=R, C or any field with characteristic
≥ 2. An intuitionistic L-fuzzy subsetB = (µ

B
, ν

B
) of V is called an intuitionistic L-fuzzy vector

subspace of V if
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µ
B

(αx+ βy) ≥ µ
B

(x) ∧ µ
B

(y), ν
B

(αx+ βy) ≤ ν
B

(x) ∨ ν
B

(y)

for any x, y ∈ V and α ∈ k.

Definition 2.3 (see [7]). The intuitionistic L-fuzzy subsets 0̃ and 1̃ are defned by µ
0̃
(x) = 0,

ν
0̃
(x) = 1 if x 6= 0 and µ

0̃
(0) = 1, ν

0̃
(0) = 0, and µ

1̃
(x) = 1, ν

1̃
(x) = 0, ∀x ∈ M. Let

A = (µ
A
, ν

A
) and B = (µ

B
, ν

B
) be intuitionistic L-fuzzy subsets of M . We say A ≤ B if for

all x ∈ M, we have µ
A

(x) ≤ µ
B

(x), ν
A

(x) ≥ ν
B

(x). We define intuitionistic L-fuzzy subsets
A ∩B, A ∪B by

µ
A∩B(x) = µ

A
(x) ∧ µ

B
(x), ν

A∩B(x) = ν
A

(x) ∨ ν
B

(x)

µ
A∪B(x) = µ

A
(x) ∨ µ

B
(x), ν

A∪B(x) = ν
A

(x) ∧ ν
B

(x).

Definition 2.4 (see [5]). Let A = (µ
A
, ν

A
) and B = (µ

B
, ν

B
) be intuitionistic L-fuzzy vector

subspaces of a k-vector space V . The intuitionistic L-fuzzy subsets A+B and α.A of V for each
α ∈ k, x ∈ X, are defined by

µ
A+B

(x) =

 sup
x=a+b

{µ
A

(a) ∧ µ
B

(b)}, if x = a+ b

0, otherwise

ν
A+B

(x) =

 inf
x=a+b

{ν
A

(a) ∨ ν
B

(b)}, if x = a+ b,

0, otherwise

and

µ
α.A

(x) =


µ
A

(αx), if α 6= 0

1, if α = 0, x = 0

0, if α = 0, x 6= 0

ν
α.A

(x) =


ν
A

(αx), if α 6= 0

0, if α = 0, x = 0

1, if α = 0, x 6= 0.

Further if A ∩B = 0̃, then A+B is said to be the direct sum and denoted by A⊕B.

Lemma 2.5. Let A = (µ
A
, ν

A
) and B = (µ

B
, ν

B
) be intuitionistic L-fuzzy vector subspaces

of an L-fuzzy vector space V . Then A + B = (µ
A+B

, ν
A+B

), A ∩ B = (µ
A∩B , νA∩B) and

α.A = (µ
α.A
, ν

α.A
) for each α ∈ k, are also intuitionistic L-fuzzy vector subspaces of V.

Definition 2.6. Let f be a mapping from a k-vector space V to a k-vector space V ′ . If A =

(µ
A
, ν

A
) and B = (µ

B
, ν

B
) are intuitionistic L-fuzzy vector subspaces of V and V ′, respectively,

then the preimage ofB = (µ
B
, ν

B
) under f is defined to be an intuitionistic L-fuzzy set f−1[B] =

(µ
f−1[B]

, ν
f−1[B]

) where µ
f−1[B]

(x) = µ
B

(f(x)), ν
f−1[B]

(x) = ν
B

(f(x)) for any x ∈ V and the
image of A = (µ

A
, ν

A
) under f is defined to be an intuitionistic L-fuzzy set f [A] = (µ

f [A]
, ν

f [A]
)

where
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µ
f [A]

(x) =

 sup
x∈f−1(y)

{µ
A

(x)}, if y ∈ f(V )

0, if y /∈ f(V ),

ν
f [A]

(x) =

 inf
x∈f−1(y)

{ν
A

(x)}, if y ∈ f(V )

0, if y /∈ f(V ).

Lemma 2.7. Let A = (µ
A
, ν

A
) and B = (µ

B
, ν

B
) are intuitionistic L-fuzzy vector subspaces of

V and V ′, respectively, and f : V → V ′ be a mapping. Then f−1[B] = (µ
f−1[B]

, ν
f−1[B]

) and
f [A] = (µ

f [A]
, ν

f [A]
) are intuitionistic L-fuzzy vector subspaces of V and V ′, respectively.

Notation remark 2.8. From now on we assume thatL = 〈L,≤,
∧
,
∨
,′ 〉 is a complete distributive

lattice set with at least 2 elements and 〈L,+〉 is also an additive group. To obtain the best
generalization of notions of intuitionistic fuzzy sets [3], fuzzy subcoalgebras [12] and fuzzy quantum
spaces [15], we consider the condition 0 ≤ µ

B
(x) + ν

B
(x) ≤ 1 instead of the condition µ

B
(x) ≤

N(ν
B

(x)), for each x ∈M in Definition 2.1.
We denote all intuitionistic L-fuzzy subsets of M by ILM .

3 Intuitionistic L-fuzzy Hoph subalgebras

Proposition 3.1. Let V be a k-vector space and B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy vector

subspace of V . We define µ
B∗ , νB∗ : V ∗ → L by

µ
B∗ (f) =


1

2
− 1

2
sup

{
µ
B

(x) | x ∈ V, f(x) 6= 0
}
, if f 6= 0

1

2
− 1

2
inf{µ

B
(x) | x ∈ V }, if f = 0

ν
B∗ (f) =


1

2
− 1

2
inf{ν

B
(x) | x ∈ V, f(x) 6= 0}, if f 6= 0

1

2
− 1

2
sup{ν

B
(x) | x ∈ V }, if f = 0

Then B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy vector subspace of V ∗.

Proof. First we show that B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy subset of V ∗.

By Notation remark 2.8, it should be shown that 0 ≤ µ
B∗ (f) + (ν

B∗ (f)) ≤ 1 for each f ∈ V ∗.
If f 6= 0, then

µ
B∗ (f) + ν

B∗ (f) = 1− 1

2

(
inf
{
µ
B

(x)|x ∈ V, f(x) 6= 0
}

+ inf
{
ν
B

(x)|x ∈ V, f(x) 6= 0
})
≤ 1

If f = 0, then

µ
B∗ (f) + ν

B∗ (f) = 1− 1

2

(
inf
{
µ
B

(x)|x ∈M
}

+ inf
{
ν
B

(x)|x ∈ V
})
≤ 1

Hence B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy subset of V ∗.
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Now it must be shown that

ν
B∗ (αf + βg) ≤ ν

B∗ (f) ∨ ν
B∗ (g), ∀f, g ∈ V ∗, 0 6= α, β ∈ k.

We consider three cases:

• If f = 0 and g = 0, then

ν
B∗ (αf + βg) = ν

B∗ (0) =
1

2
− 1

2
sup{ν∗

B
(x)|x ∈ V } = ν

B∗ (f) = ν
B∗ (g)

• If f = 0 and g 6= 0, then

ν
B∗ (αf + βg) =

1

2
− 1

2
inf{ν

B∗ (x)|x ∈ V, βg(x) 6= 0}

≤
(1

2
− 1

2
sup{µ

B∗ (x)|x ∈ V }
)∧(1

2
− 1

2
inf{µ

B∗ (x)|x ∈ V, g(x) 6= 0}
)

= ν
B∗ (f) ∨ ν

B∗ (g)

• If f 6= 0 and g 6= 0, then

ν
B∗ (αf + βg) =

1

2
− 1

2
inf{ν

B∗ (x)|x ∈ V, (αf + βg)(x) 6= 0}

≤
((1

2
− 1

2
inf{µ∗

B
(x)|x ∈ V, f(x) 6= 0}

)
∧(1

2
− 1

2
inf{µ∗

B
(x)|x ∈ V, g(x) 6= 0}

)
= ν

B∗ (f) ∨ ν
B∗ (g)

We can prove similarly that

µ
B∗ (αf + βg) ≥ µ

B∗ (f) ∧ µ
B∗ (g), ∀f, g ∈ V ∗, 0 6= α, β ∈ k.

Hence B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy vector subspace of V ∗.

Definition 3.2. Let (A,M,U) be a k-algebra. An intuitionistic L-fuzzy subset B = (µ
B
, ν

B
) of

A is called an intuitionistic L-fuzzy subalgebra of A if it satisfies the following conditions:

1) B = (µ
B
, ν

B
) is an intuitionistic L-fuzzy vector subspace of A,

2) µ
B

(xy) ≥ µ
B

(x) ∧ µ
B

(y), ν
B

(xy) ≤ ν
B

(x) ∨ ν
B

(y), for any x, y ∈ A.

Definition 3.3. If we set the condition

µ
B

(xy) ≥ µ
B

(y), ν
B

(xy) ≤ ν
B

(y),

(
µ
B

(xy) ≥ µ
B

(x), ν
B

(xy) ≤ ν
B

(x)

)
, ∀x, y ∈ A,

instead of condition 2) in Definition 3.2, then B = (µ
B
, ν

B
) is called an intuitionistic L-fuzzy left

(right) ideal of A.
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Definition 3.4. Let (C,∆, ε) be a coalgebra and for any x ∈ C,

∆(x) =
n∑
i=1

xi1 ⊗ xi2.

An intuitionisticL-fuzzy subsetB = (µ
B
, ν

B
) ofC is called an intuitionisticL-fuzzy subcoalgebra

of C if it satisfies the following conditions:

1) B = (µ
B
, ν

B
) is an intuitionistic L-fuzzy vector subspace of C,

2) µ
B

(x) ≤ µ
B

(xi1)
∧
µ
B

(xi2), ν
B

(x) ≥ ν
B

(xi1)
∨
ν
B

(xi2), ∀x ∈ C, ∀i.

Definition 3.5. If we set the condition

µ
B

(x) ≤ µ
B

(xi2), ν
B

(x) ≥ ν
B

(xi2),

(
µ
B

(x) ≤ µ
B

(xi1), ν
B

(x) ≥ ν
B

(xi1)

)
, ∀x ∈ C, ∀i,

instead of the condition 2) in Definition 3.4, then B = (µ
B
, ν

B
) is called an intuitionistic L-fuzzy

left (right) coideal of C.

Remark 3.6. i) An intuitionistic L-fuzzy subcoalgebra is an intuitionistic L-fuzzy left (right)
coideal.

ii) If B = (µ
B
, ν

B
) is an intuitionistic L-fuzzy left and right coideal, by Definition 3.5, we

have

µ
B

(x) ≤ µ
B

(xi2), µ
B

(x) ≤ µ
B

(xi1) ⇒ µ
B

(x) ≤ µ
B

(xi1)
∧

µ
B

(xi2)

ν
B

(x) ≥ ν
B

(xi2), ν
B

(x) ≥ ν
B

(xi1) ⇒ ν
B

(x) ≥ ν
B

(xi1)
∨

ν
B

(xi2),

∀x ∈ C, ∀i. Hence B is an intuitionistic L-fuzzy subcoalgebra.

Theorem 3.7. An intuitionisticL-fuzzy subsetB = (µ
B
, ν

B
) of the coalgebraC is an intuitionistic

L-fuzzy left (right) coideal if and only if the level sets

Br,s =
{
x ∈ C : µ

B
(x) ≥ r, ν

B
(x) ≤ s

}
are left (right) coideals of C where

r + s ∈ L, 0 ≤ r ≤ µ
B

(0), ν
B

(0) ≤ s ≤ 1.

Proof. (=⇒) Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy left coideal of C and r, s ∈ L, such

that r+ s ∈ L, 0 ≤ r ≤ µ
B

(0), ν
B

(0) ≤ s ≤ 1. Since 0 ∈ Br,s, then Br,s 6= ∅. Let x, y ∈ Br,s

and α, β ∈ A. Using (1) of Definition 3.2 we have

µ
B

(αx+ βy) ≥ µ
B

(x) ∧ µ
B

(y) ≥ r, ν
B

(αx+ βy) ≤ ν
B

(x) ∨ ν
B

(y) ≤ s.

So (αx+ βy) ∈ Br,s. Let x ∈ Br,s ⊂ C. By Definition 3.4 we have

r ≤ µ
B

(x) ≤ µ
B

(xi2), s ≥ ν
B

(x) ≥ ν
B

(xi2).

Then xi2 ∈ Br,s. Hence we have ∆(Br,s) ⊂ C ⊗Br,s. Therefore Br,s is a left coideals of C.
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(⇐=) Let x, y ∈ C. We assume that µ
B

(x) = r, ν
B

(x) = s and µ
B

(y) = r′, ν
B

(y) = s′. Hence
r, s, r′, s′ ∈ L, s.t. r + s ∈ L, r′ + s′ ∈ L, 0 ≤ r, r′ ≤ µ

B
(0), µ

B
(0) ≤ s, s′ ≤ 1. Then

x ∈ Br,s and y ∈ Br′,s′ . Without loss of generality we assume only two cases:

i) r ≤ r′ and s ≤ s′. Hence µ
B

(x), µ
B

(y) ≥ r and ν
B

(x), ν
B

(y) ≤ s′. Therefore x, y ∈ Br,s′ .
Since Br,s′ is a subspace of C, hence αx+ βy ∈ Br,s′ for each α, β ∈ A. Thus

µ
B

(αx+ βy) ≥ r = r ∧ r′ = µ
B

(x) ∧ µ
B

(y),

ν
B

(αx+ βy) ≤ s′ = s ∨ s′ = ν
B

(x) ∨ ν
B

(y).

ii) r ≤ r′ and s′ ≤ s. Hence µ
B

(x), µ
B

(y) ≥ r and ν
B

(x), ν
B

(y) ≤ s. Therefore x, y ∈ Br,s.
Since Br,s a subspace of C, hence αx+ βy ∈ Br,s for each α, β ∈ A. Thus

µ
B

(αx+ βy) ≥ r = r ∧ r′ = µ
B

(x) ∧ µ
B

(y),

ν
B

(αx+ βy) ≤ s = s ∨ s′ = ν
B

(x) ∨ ν
B

(y).

Therefore B satisfies the condition 1) of Definition 3.2.
To prove condition 2), we use the assumption that Br,s is a left coideals of C. Then we have
∆(Br,s) ⊂ C ⊗Br,s. Hence xi2 ∈ Br,s. Thus

µ
B

(xi2) ≥ r = µ
B

(x), ν
B

(xi2) ≤ s = ν
B

(x).

Therefore, B is an intuitionistic L-fuzzy left coideal of C.

The proof of the intuitionistic L-fuzzy right coideal is similar.

Definition 3.8. Let C and D be two coalgebras. The linear map f : C → D is a morphism of
coalgebras, if

∆D ◦ f = (f ⊗ f) ◦∆D, ε
D
◦ f = ε

C
.

n∑
i=1

f(x)i1 ⊗ f(x)i2 =
m∑
j=1

f(xj1)⊗ f(xj2), (3.1)

Proposition 3.9. Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy subcoalgebra (respectively, left /

right coideal) of D and f : C → D be a morphism of coalgebras. f−1[B] = (µ
f−1[B]

, ν
f−1[B]

) is
an IL-fuzzy subcoalgebra (respectively, fuzzy left / right coideal) of C.

Proof. Let x, y ∈ C and α, β ∈ A. Then

µ
f−1[B]

(αx+ βy) = µ
B

(
f(αx+ βy)

)
= µ

B

(
αf(x) + βf(y)

)
≥ µ

B
(f(x)) ∧ µ

B
(f(y))

= µ
f−1[B]

(x)
∧

µ
f−1[B]

(y)
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ν
f−1[B]

(αx+ βy) = ν
B

(
f(αx+ βy)

)
= ν

B

(
αf(x) + βf(y)

)
≤ ν

B
(f(x))

∨
ν
B

(f(y))

= ν
f−1[B]

(x)
∨

ν
f−1[B]

(y)

Let ∆C(x) =
∑m

j=1 xj1 ⊗ xj2. Since

∆D(f(x)) =
n∑
i=1

f(x)i1 ⊗ f(x)i2 =
m∑
j=1

f(xj1)⊗ f(xj2), (3.2)

µ
f−1[B]

(x) = µ
B

(
f(x)

)
≤ µ

B
(f(x)i1)

∧
µ
B

(f(x)i2)

= µ
B

(f(xj1))
∧

µ
B

(f(xj2))

= µ
f−1[B]

(xj1)
∧

µ
f−1[B]

(xj2)

Similarly we can show that

ν
f−1[B]

(x) ≥ ν
f−1[B]

(xj1)
∨

ν
f−1[B]

(xj2).

So f−1[B] is an intuitionistic L-fuzzy subcoalgebra of C.
The case of intuitionistic L-fuzzy left (right) coideal can be proved by the similar manner.

Proposition 3.10. Let A = (µ
A
, ν

A
) be an intuitionistic L-fuzzy subcoalgebra (respectively, left /

right coideal) of C and f : C → D be a morphism of subcoalgebras. Then f [A] = (µ
f [A]
, ν

f [A]
)

is an intuitionistic L-fuzzy subcoalgebra (respectively, left / right coideal) of D.

Proof. Let x, y ∈ D. We show that

µ
f [A]

(x+ y) ≥ µ
f [A]

(x)
∧

µ
f [A]

(y), ν
f [A]

(x+ y) ≤ ν
f [A]

(x)
∨

ν
f [A]

(y). (3.3)

If f−1(x) = ∅ or f−1(y) = ∅, then 0 = µ
f [A]

(x)
∧
µ
f [A]

(y) and 1 = ν
f [A]

(x)
∨
ν
f [A]

(y). So (3.3)

holds. Now we assume that there exist r, s ∈ C such that f(r) = x, f(s) = y. So by linearity of
f , we have f(r + s) = x+ y. Hence r + s ∈ f−1(x+ y) and we have

µ
f [A]

(x+ y) = sup
{
µ
A

(z) | z ∈ f−1(x+ y)
}

≥ sup
{
µ
A

(r + s) | (r + s) ∈ f−1(x+ y)
}

≥ sup
{

(µ
A

(r) ∧ µ
A

(s)) | (r + s) ∈ f−1(x+ y)
}

≥ sup
{
µ
A

(r) | r ∈ f−1(x)
}∧

sup
{
µ
A

(s) | s ∈ f−1(y)
}

≥ µ
f [A]

(x)
∧

µ
f [A]

(y)
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ν
f [A]

(x+ y) = inf
{
ν
A

(z) | z ∈ f−1(x+ y)
}

≤ inf
{
ν
A

(r + s) | (r + s) ∈ f−1(x+ y)
}

≤ inf
{

(ν
A

(r) ∨ ν
A

(s)) | (r + s) ∈ f−1(x+ y)
}

≤ inf
{
ν
A

(r) | r ∈ f−1(x)
}∨

sup
{
ν
A

(s) | s ∈ f−1(y)
}

≤ ν
f [A]

(x)
∨

ν
f [A]

(y).

Let x ∈ D and α ∈ A. For each z ∈ f−1(x), we have f(αz) = αf(z) = αx. So we get

µ
f [A]

(αx) = sup
{
µ
A

(w) | w ∈ f−1(αx)
}

≥ sup
{
µ
A

(αz) | (αz) ∈ f−1(αx)
}

≥ sup
{
µ
A

(z) | z ∈ f−1(x)
}

= µ
f [A]

(x)

ν
f [A]

(αx) = inf
{
ν
A

(w) | w ∈ f−1(αx)
}

≤ inf
{
ν
A

(αz) | (αz) ∈ f−1(αx)
}

≤ inf
{
ν
A

(z) | z ∈ f−1(x)
}

= ν
f [A]

(x)

Let x ∈ D and ∆D(x) =
∑m

j=1 xj1 ⊗ xj2. We want show that

µ
f [A]

(x) ≤ µ
[A]

(xj1)
∧

µ
f [A]

(xj2), ν
f [A]

(x) ≥ ν
f [A]

(xj1)
∨

ν
f [A]

(xj2) (3.4)

If f−1(x) = ∅, then 0 = µ
f [A]

(x) and 1 = ν
f [A]

(x). So (3.4) holds. Now we assume that there
exists z ∈ C such that f(z) = x. Since

m∑
j=1

xj1 ⊗ xj2 = ∆D(x) = ∆D(f(z))

= (f ⊗ f) ◦∆C(z)

=
n∑
i=1

f(zi1)⊗ f(zi2)

So zi1 ∈ f−1(xj1) and zi2 ∈ f−1(xj2). Hence

µ
f [A]

(x) = sup
{
µ
A

(z) | z ∈ f−1(x)
}

≤ sup
{(
µ
A

(zi1)
∧

µ
A

(zi2)
)
| zi1 ∈ f−1(xj1), zi2 ∈ f−1(xj2)

}
= sup

{
µ
A

(zi1) | zi1 ∈ f−1(xj1)
}∧

sup
{
µ
A

(zi2) | zi2 ∈ f−1(xj2)
}

= µ
f [A]

(xj1)
∧

µ
f [A]

(xj2)

We can similarly show that ν
f [A]

(x) ≥ ν
f [A]

(xj1)
∨
ν
f [A]

(xj2).
Therefore f [A] = (µ

f [A]
, ν

f [A]
) is an IF -fuzzy subcoalgebra of D.

The case of intuitionistic L-fuzzy left (right) coideal can be proved in a similar manner.
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Let (C,∆, ε) be a k-coalgebra. We define the mappings M : C∗ → C∗ ⊗ C∗, M = ∆∗ ◦ ρ,
where ρ is defined as ρ : C∗ ⊗C∗ → (C ⊗C)∗ by ρ(f ⊗ g)(x⊗ y) = f(x)g(y) and U : k → C∗

by U = ε∗ ◦ φ, where φ : k → k∗ is the canonical isomorphism. Using [13, Proposition 1.3.6],
we have (C∗,M, U) is an algebra. The multiplication is denoted by M(f ⊗ g) = f ∗ g and we
have

(f ∗ g)(x) =
n∑
i=1

f(xi1) g(xi2).

Proposition 3.11. Let (C,∆, ε) be a coalgebra.

i) Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy subcoalgebra of C. Then B∗ = (µ

B∗ , νB∗ ) is
an intuitionistic L-fuzzy ideal of C∗.

ii) Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy left (right) coideal of C. Then B∗ =

(µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy left (right) ideal of C∗.

Proof. i) Using Proposition 3.1, B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy vector subspace of

C∗. We should prove that

ν
B∗

(
f ∗ g

)
≤ ν

B∗ (f)
∧

µ
B∗ (g), for any f, g ∈ C∗. (3.5)

Let f 6= 0 and g 6= 0. We have

ν
B∗

(
f ∗ g

)
=

1

2
− 1

2
inf
{
ν
B

(x) | x ∈ V, (f ∗ g)(x) 6= 0
}

=
1

2
− 1

2
inf

{(
ν
B

(xi1)
∧

ν
B

(xi2)
)
| xi1, xi2 ∈ V,

n∑
i=1

f(xi1) g(xi2) 6= 0

}
=

1

2
− 1

2
inf

{(
ν
B

(xi1)
∧

ν
B

(xi2)
)
| xi1, xi2 ∈ V, f(xi1) g(xi2) 6= 0

}
=

1

2
− 1

2
inf

{(
ν
B

(xi1)
∧

ν
B

(xi2)
)
| xi1, xi2 ∈ V, f(xi1) 6= 0, g(xi2) 6= 0

}
≤ 1

2
− 1

2
inf

{(
ν
B

(xi1) | xi1 ∈ V, f(xi1) 6= 0

}
∧

inf

{(
ν
B

(xi2)
)
| xi2 ∈ V, g(xi2) 6= 0

}
≤ 1

2
− 1

2
inf

{(
ν
B

(u) | u ∈ V, f(u) 6= 0

}
∧

inf

{(
ν
B

(v)
)
| v ∈ V, g(v) 6= 0

}
≤ ν

B∗ (f)
∧

µ
B∗ (g)
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Let f = 0 and g 6= 0. Then we have (f ∗ g)(x) =
∑n

i=1 f(xi1) g(xi2) = 0. Thus

ν
B∗

(
f ∗ g

)
= ν

B∗ (0) = ν
B∗ (f)

=
1

2
− 1

2
sup{ν

B
(x) | x ∈ V }

≤ 1

2
− 1

2
sup{ν

B
(x) | x ∈ V, g(x) 6= 0}

≤ 1

2
− 1

2
inf{ν

B
(x) | x ∈ V, g(x) 6= 0} = ν

B∗ (g).

Hence we have ν
B∗

(
f ∗ g

)
≤ ν

B∗ (f)
∧
µ
B∗ (g).

Let f = 0 and g = 0. Then ν
B∗

(
f ∗ g

)
= ν

B∗ (0) = ν
B∗ (f) = µ

B∗ (g) and the result is obtained.
We can prove similarly that

µ
B∗

(
f ∗ g

)
≥ µ

B∗ (f)
∨

µ
B∗ (g), for any f, g ∈ C∗.

Hence B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy ideal of C∗.

ii) This can be proved in a similar manner.

Let the k-algebra (A,M,U) be a finite dimensional algebra. We define the mappings ∆ :

A∗ → A∗⊗A∗ and ε : A∗ → k by ∆ = ρ−1 ◦M∗ and ε = ψ◦U∗ where ρ : A∗⊗A∗ → (A⊗A)∗

by ρ(f ⊗ g)(x⊗ y) = f(x)g(y) and ψ : k∗ → k by ψ(f) = 1. Then (A∗,∆, ε) is a coalgebra.

Proposition 3.12. Let (A,M,U) be a finite dimensional algebra.

i) Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy ideal of A. Then B∗ = (µ

B∗ , νB∗ ) is an
intuitionistic L-fuzzy subcoalgebra of A∗.

ii) Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy left (right) ideal of A. Then B∗ = (µ

B∗ , νB∗ )

is an intuitionistic L-fuzzy left (right) coideal of A∗.

Proof. i) Using Proposition 3.1, B∗ = (µ
B∗ , νB∗ ) is an intuitionistic L-fuzzy vector subspace of

C∗. Let ∆(f) =
∑n

j=0 fj1 ⊗ fj2. We show that

ν
B∗

(
f
)
≥ ν

B∗

(
fj1
)∨

ν
B∗

(
fj2
)
.

Let f 6= 0, then we have

ν
B∗ (f) =

1

2
− 1

2
inf{ν

B
(x)| x ∈ A, f(x) 6= 0}

≥ 1

2
− 1

2
inf{ν

B
(uv)| uv ∈ A, f(uv) 6= 0}

≥ 1

2
− 1

2
inf{

(
ν
B

(u)
∨

ν
B

(v)
)
| uv ∈ V,

n∑
j=0

fj1(u)fj2(v) 6= 0}

≥ 1

2
− 1

2
inf{

(
ν
B

(u)
∨

ν
B

(v)
)
| uv ∈ V, fj1(u)fj2(v) 6= 0}

≥ 1

2
− 1

2

(
inf{ν

B
(u)| u ∈ V, fj1(u) 6= 0}

)∧
inf{ν

B
(v)| v ∈ V, fj2(v) 6= 0}
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If
inf{ν

B
(u)| u ∈ V, fj1(u) 6= 0} ≥ inf{ν

B
(v)| v ∈ V, fj2(v) 6= 0},

then ν
B∗

(
fj1
)
≤ ν

B∗

(
fj2
)
. Hence ν

B∗

(
f
)
≥ ν

B∗

(
fj2
)
.

If
inf{ν

B
(u)| u ∈ V, fj1(u) 6= 0} ≤ inf{ν

B
(v)| v ∈ V, fj2(v) 6= 0},

then ν
B∗

(
fj1
)
≥ ν

B∗

(
fj2
)
. Hence ν

B∗

(
f
)
≥ ν

B∗

(
fj1
)
. Therefore ν

B∗

(
f
)
≥ ν

B∗

(
fj1
)∨

ν
B∗

(
fj2
)
.

Let f = 0. Then fj1 = fj2 = 0. So ν
B∗

(
f
)
≥ ν

B∗

(
fj1
)∨

ν
B∗

(
fj2
)
.

We can also show that
µ
B

(
f
)
≤ µ

B

(
fj1)

)∧
µ
B

(
fj2)

)
and this completes the proof.

ii) This can be proved similarly to i).

Definition 3.13. Let (H,M,U,∆, ε) be a k-bialgebra. If B = (µ
B
, ν

B
) is either an intuitionistic

L-fuzzy subalgebra or intuitionistic L-fuzzy subcoalgebra of H , then it is called an intuitionistic
L-fuzzy subbialgebra of H . Let S : H → H be the antipode of H , then for each x ∈ H we have
(S ⊗ I)∆(x) = (I ⊗ S)∆(x) = U(ε(x). If

ν
B

(∑
(x)

S(xi1)xi2
)

= ν
B

(∑
(x)

xi1S(xi2)
)

= ν
B

(
U(ε(x)

)
, (3.6)

µ
B

(∑
(x)

S(xi1)xi2
)

= µ
B

(∑
(x)

xi1S(xi2)
)

= µ
B

(
U(ε(x)

)
, (3.7)

then B = (µ
B
, ν

B
) is called an intuitionistic L-fuzzy Hoph subalgebra of H .

Example 3.14. Let A be the algebra generated by an invertible element a and an element b such
that bn = 0 and ab = λba, where λ is a primitive 2n-th root of unity. It can be shown that A is a
Hopf algebra with the comultiplication, counit and antipode defined by

∆(a) = a⊗ a, ∆(b) = a⊗ b+ b⊗ a−1, ε(a) = 1, ε(b) = 0

S(a) = a−1, S(b) = −a−1ba.

An interesting solution is given by [13, Exercise 5.6.24] as follows:

“Let C = 〈a〉 be an infinite cyclic group and a∗(a) =
√
λ. Clearly A ' H(C, n, a2, a∗). So

A has the properties of Ore extension Hopf algebras of the form H(C, n, c, c∗, a, b).”

Now we define an intuitionistic I-fuzzy subset B = (µ
B
, ν

B
) of A by

µ
B

(a) = µ
B

(a−1) = 0.7, ν
B

(a) = ν
B

(a−1) = 0.2

µ
B

(b) = 0.4, ν
B

(b) = 0.6, µ
B

(1) = 1, ν
B

(1) = 0, µ
B

(0) = 0.5, µ
B

(0) = 0.5

It is easy to prove that B = (µ
B
, ν

B
) is an intuitionistic I-fuzzy subbialgebra of A.
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Furthermore

µ
B

(
(S ⊗ I)∆(a)

)
= µ

B

(
(S ⊗ I)(a⊗ a)

= µ
B

(
S(a)a

)
= µ

B

(
a−1a

)
= µ

B
(1) = 1

= µ
B

(
U(ε(a)

)
,

µ
B

(
(S ⊗ I)∆(b)

)
= µ

B

(
(S ⊗ I)(a⊗ b+ b⊗ a−1)

= µ
B

(
S(a) b+ S(b) a−1

)
= µ

B

(
a−1b+ (−a−1ba) a−1

)
= µ

B
(0) = 0.5

= µ
B

(
U(ε(b)

)
.

Similarly, we can show that µ
B

(
(I ⊗ S)∆(x)

)
= µ

B

(
U(ε(x)

)
, ∀x ∈ A.

Hence B = (µ
B
, ν

B
) satisfies the condition (3.7) and similarly satisfies (3.6). Therefore

B = (µ
B
, ν

B
) is an intuitionistic I-fuzzy Hoph subalgebra of A.

Example 3.15. Let H be a k-vector space with the basis {ci}∞i=0. Define two k-linear mappings
M : H ⊗H → H and U : k → H by M(ci ⊗ cj) = cicj for all i, j ≥ 0 and U(1) = c0. Also
define two k-linear mappings ∆ : H → H ⊗H and ε : H → k by

∆(cn) =
n∑
i=0

ci ⊗ cn−i, ε(cn) = δn,0 ∀n ≥ 0,

and define the antipode S : H → H, S(cn) = δn,0 cn. It is proved in [1] that (H,M,U,∆, ε, S)

is a Hoph algebra. Let I = [0, 1]. We define an intuitionistic I-fuzzy subset B = (µ
B
, ν

B
) of H

by

µ
B

(cn) =
1

n+ 1
, ν

B
(cn) =

n

n+ 1
, ∀n ≥ 0,

µ(αx+ βy) = µ(x) ∨ µ(y), ν(αx+ βy) = ν(x) ∧ ν(y),

µ(xy) = µ(x) ∧ µ(y), ν(xy) = ν(x) ∨ ν(y),

for all x, y ∈ H and for all α, β ∈ k.
Therefore B is an intuitionistic I-fuzzy subalgebra of H .

Since we have for each i = 0, . . . , n:

1

n+ 1
≤ 1

i+ 1
∧ 1

n− i+ 1
=⇒ µ

B
(cn) ≤ µ

B
(ci)∧µB(cn−i) =⇒ µ

B
(x) ≤ µ

B
(xi1)

∧
µ
B

(xi2)

n

n+ 1
≥ i

i+ 1
∨ n

n− i+ 1
=⇒ ν

B
(cn) ≥ ν

B
(ci)∨ νB(cn−i) =⇒ ν

B
(x) ≥ ν

B
(xi1)

∨
ν
B

(xi2).
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Hence B is an intuitionistic I-fuzzy subcoalgebra of H . Now

µ
B

( n∑
i=0

S(ci) cn−i
)

=
n∨
i=0

µ
B

(δi,0 ci) ∧ µ
B

(cn−i)

=
n∨
i=0

1 ∧ 1

n− i+ 1
= 1

=
n∨
i=0

1

i+ 1
∧ 1

=
n∨
i=0

µ
B

(ci) ∧ µ
B

(δn−i,0 cn−i)

= µ
B

( n∑
i=0

ci S(cn−i)
)
.

µ
B

(
(U ◦ ε)(c0)

)
= µ

B
(U(δ0,0) = µ

B
(1) = 1.

µ
B

(
(U ◦ ε)(cn)

)
= µ

B
(U(δn,0) = µ

B
(0) = 1.

Hence B satisfies (3.7) and we can similarly show that (3.6) holds. Therefore B = (µ
B
, ν

B
)

is an intuitionistic I-fuzzy Hoph subalgebra of H .

4 Intuitionistic L-fuzzy quantum subsets of kq[x, y]

Let q be an invertible real (complex) number less than 1, and let Iq be the two-sided ideal of the
free algebra k[x, y] generated by the element yx− qxy.

The quantum plane is defined as the quotient-algebra

kq[x, y] = k[x, y]/Iq. (4.1)

Definition 4.1. Let B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy Hoph subalgebra of k[x, y]. If it

satisfies the condition
µ
B

(yx) = µ
B

(qxy), ν
B

(yx) = ν
B

(qxy)

then B = (µ
B
, ν

B
) is called an intuitionistic L-fuzzy quantum subspace of kq[x, y].

Example 4.2. We can consider H = k[x, y] as a k-vector space with the basis {xmyn}∞m,n=0 and
define

M(xmyn ⊗ xkyl) = xm+kyn+l, U(1) = x0y0 = 1.

∆(xmyn) =
m∑
i=0

n∑
j=0

xiyj ⊗ xm−iyn−i, ε(xmyn) = δm+n,0,

S(xmyn) = δm+n,0 x
myn, ∀m,n, k, l ≥ 0.

Then similarly to Example 3.15 we can prove that k[x, y] is a Hoph algebra.
Define an intuitionistic I-fuzzy subset B = (µ

B
, ν

B
) of H by

µ
B

(xmyn) =
1

m+ n+ 1
, ν

B
(xmyn) =

m+ n

m+ n+ 1
, ∀m,n ≥ 0,
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Then B = (µ
B
, ν

B
) is an intuitionistic I-fuzzy Hoph subalgebra of H . Also we have

µ
B

(xy) =
1

3
= µ

B
(qyx), ν

B
(xy) =

2

3
= ν

B
(qyx)

Hence B = (µ
B
, ν

B
) is an intuitionistic I-fuzzy quantum subset of kq[x, y].

5 Z2-graded intuitionistic L-fuzzy quantum subspaces of Aq

Let k be a field of characteristic 6= 2 (R or C). Suppose the format (a1, . . . , an) be an arbitrary
sequence, ai ∈ Z2 and the multiparameter

q = {qij : |qij| ≤ 1, 1 ≤ i < j ≤ n} , (5.1)

be the family of non-zero elements of k. The quantum superspace Aq or, rather, the polynomial
function ring on it is generated by coordinates x1, . . . , xn with parity x̂i = î and commutation
rules:

x2
i = 0 for î = 1 and xjxi = (−1)îĵqij xi xj for i < j. (5.2)

We call xi an odd (even) coordinate if î = 1(̂i = 0) and we have ki = 0; 1(ki ≥ 0). We denote
briefly an polynomial function

f(x1, . . . , xn) =
∑

0≤k1,...,kn≤m

αk1,...,kn x
k1
1 . . . xknn ,

by f(x) =
∑
αk x

k.

Proposition 5.1. The multiplication of any two polynomial functions using (5.2), can be briefly
written:

f(x). g(x) =
∑

αk x
k.
∑

βl x
l =
∑

αk βl γkl x
k+l. (5.3)

where
γkl =

∏
1≤i≤n−1

∏
i<j≤n

(−1)likj î ĵ q
likj
ij .

Proof.

xk1
1 . . . xknn xl11 . . . x

ln
n =

(
xk1

1 . . . xknn
) (
xl11 . . . x

ln
n

)
=

( ∏
1<j≤n

(−1)l1kj 1̂ ĵ q
l1kj
1j

)(
xk1+l1

1 xk2
2 . . . xknn

) (
xl22 . . . x

ln
n

)
=

( ∏
1≤i≤n−1

(−1)likj 1̂ ĵ
∏
i<j≤n

q
likj
ij

)(
xk1+l1

1 . . . xkn+ln
n

)
= γkl x

(k1+l1)
1 . . . x(kn+ln)

n .

Definition 5.2. An intuitionistic L-fuzzy subset B = (µ
B
, ν

B
) of Aq is called a Z2-graded

intuitionistic L-fuzzy q-deformed quantum subspaces of Aq if it satisfies three conditions:

1) B = (µ
B
, ν

B
) is a Z2-graded intuitionistic L-fuzzy vector subspace of Aq

2) µ
B

(fg) ≥ µ
B

(x) ∧ µ
B

(y), ν
B

(fg) ≤ ν
B

(f) ∨ ν
B

(g) for any f, g ∈ Aq(V )

3) µ
B

(xjxi) = µ
B

(
(−1)ijqij xixj

)
, ν

B
(xjxi) = ν

B

(
(−1)ijqij xixj

)
, for all i < j.
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Proposition 5.3. Let E = Aq and B = (µ
B
, ν

B
) be an intuitionistic L-fuzzy subspace of E

defined by

µ
B

(xi) = ri, ν
B

(xi) = si, ri, si ∈ L, s.t. 0 ≤ ri + sj ≤ 1 ∀i, j ∈ L,

and for each f ∈ E,
µ
B

(f) = sup
0≤k′1,...,k′n≤m

{
(k′1r1) ∧ . . . ∧ (k′nrn)

}
ν
B

(f) = inf
0≤k′1,...,k′n≤m

{
(k′1s1) ∨ . . . ∨ (k′nsn)

}
,

where

k′i =

0, if ki = 0,

1, if ki ≥ 1.
(5.4)

Then B = (µ
B
, ν

B
) is an intuitionistic L-fuzzy vector subspace of E.

Proof. Clearly for each f, g ∈ E, we have 0 ≤ µ
B

(f) + ν
B

(f) ≤ 1. Also:

µ
B

(f) ∧ µ
B

(g) = sup
0≤k′1,...,k′n≤m

{
(k′1r1) ∧ . . . ∧ (k′nrn)

} ∧
sup

0≤l′1,...,l′n≤l

{
(l′1r1) ∧ . . . ∧ (l′nrn)

}
≤ sup

0≤k′1,...,k′n≤m

{
(k′1r1) ∧ . . . ∧ (k′krk)

} ∨
sup

0≤l′1,...,l′n≤l

{
(l′1r1) ∧ . . . ∧ (l′nrn)

}
= µ

B
(f + g),

ν
B

(f) ∨ ν
B

(g) = inf
0≤k′1,...,k′n≤m

{
(k′1s1) ∨ . . . ∨ (k′nsn)

} ∨
inf

0≤l′1,...,l′n≤l

{
(l′1s1) ∨ . . . ∨ (l′nsn)

}
≥ inf

0≤k′1,...,k′n≤m

{
(k′1s1) ∨ . . . ∨ (k′nsn)

} ∧
inf

0≤l′1<...<l′n≤l

{
(l′1s1) ∨ . . . ∨ (k′nsn)

}
= ν

B
(f + g).

Since for any α ∈ k, we have:

µ
B

(αxi) = ri ≥ µ
B

(xi), ν
B

(αxi) = si ≤ ν
B

(xi),

hence
µ
B

(αf) = sup
0≤k′1,...,k′n≤m

{
(k′1r1) ∧ . . . ∧ (k′nrn)

}
= µ

B
(f),

ν
B

(αf) = inf
0≤k′1,...,k′n≤m

{
(k′1s1) ∨ . . . ∨ (k′nsn)

}
= ν

B
(f).

Definition 5.4. Let V = V0̄ ⊕ V1̄ be a Z2-graded vector space. Suppose that A0̄ = (µ
A0̄
, ν

A0̄
)

and A1̄ = (µ
A1̄
, ν

A1̄
) are intuitionistic L-fuzzy vector subspaces of V0̄, V1̄, respectively.

Define A′0̄ = (µ
A′

0̄

, ν
A′

0̄

) where

µ
A′

0̄

(x) =

{
µ
A0̄

(x) x ∈ V0̄

0 x /∈ V0̄,
ν
A′

0̄

(x) =

{
ν
A0̄

(x) x ∈ V0̄

1 x /∈ V0̄,

and define A′1̄ = (µ
A′

1̄

, ν
A′

1̄

) where

µ
A′

1̄

(x) =

{
µ
A1̄

(x) x ∈ V1̄

0 x /∈ V1̄,
ν
A′

1̄

(x) =

{
ν
A1̄

(x) x ∈ V1̄

1 x /∈ V1̄.
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Then A′0̄ = (µ
A′

0̄

, ν
A′

0̄

) and A′1̄ = (µ
A′

1̄

, ν
A′

1̄

) are the intuitionistic L-fuzzy vector subspaces

of V . Moreover, we have A′0̄∩A
′
1̄ = 0̃. So A′0̄ +A′1̄ is the direct sum and is denoted by A′0̄⊕A

′
1̄.

If A = (µ
A
, ν

A
) is an intuitionistic L-fuzzy vector subspace of V and A = A0̄ ⊕ A1̄, then

A = (µ
A
, ν

A
) is called a Z2-graded intuitionistic L-fuzzy vector subspace of V and A0̄, A1̄ are

called the even part and odd part of A respectively.

Proposition 5.5. Let B = (µ
B
, ν

B
) be the intuitionistic L-fuzzy vector subset of E = Aq which

we defined in Example 5.3. Setting E0̄, the k-algebra generated by

{xk1
1 . . . xknn :

∑
i=1

ki ≡ 0 (mod 2)}

and E1̄ the k-algebra generated by

{xk1
1 . . . xknn :

∑
i=1

ki ≡ 1 (mod 2)},

it is clear that E = E0̄ ⊕ E1̄ has the structure of a k-superalgebra. Then B = (µ
B
, ν

B
) is an

intuitionistic L-fuzzy q-deformed quantum subsuperalgebra of E.

Proof. 1) We define two intuitionistic L-fuzzy vector subsets B0̄, B1̄ of E by

µ
B0̄

(x) =

{
µ
B

(x) if x ∈ E0̄

0 if x ∈ E1̄

ν
B0̄

(x) =

{
ν
B

(x) if x ∈ E0̄

1 if x ∈ E1̄

µ
B1̄

(x) =

{
µ
B

(x) if x ∈ E1̄

0 if x ∈ E0̄

ν
B1̄

(x) =

{
ν
B

(x) if x ∈ E1̄

1 if x ∈ E0̄.

Then B0̄∩B1̄ = 0̃. We show that B = B0̄ +B1̄. Since each f ∈ E can be wrtien as f = f1 +f2

which f1 ∈ E0̄ and f2 ∈ E1̄. Hence we have

µ
B0̄+B1̄

(f) = sup
f=f1+f2

{µ
B0̄

(f1) ∧ µ
B1̄

(f2)} = µB(f1) ∧ µ
B

(f2) = µ
B

(f)

ν
B0̄+B1̄

(f) = inf
f=f1+f2

{ν
B0̄

(f1) ∧ ν
B1̄

(f2)} = νB(f1) ∨ µ
B

(f2) = ν
B

(f)

Thus B = B0̄ ⊕B1̄ is a Z2-graded intuitionistic L-fuzzy vector subspace of E.

2) For each f, g ∈ E, we have:

µ
B

(f) ∧ µ
B

(g) = sup
0≤k′1,...,k′n≤m

{
(k′1r1) ∧ . . . ∧ (k′nrn)

} ∧
sup

0≤l′1,...,l′n≤l

{
(l′1r1) ∧ . . . ∧ (l′nrn)

}
≤ sup

0≤k′1,...,k′n≤m, 0≤l′1,...,l′n≤l

{
(k′1r1) ∧ . . . ∧ (k′nrn)

∧
(l′1r1) ∧ . . . ∧ (l′nrn)

}

≤ sup
0≤(k+l)′1,...,(k+l)′n≤m+l

{
((k + l)′1r1) ∧ . . . ∧ ((k + l)′krk)

}
= µ

B
(f g)
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ν
B

(f) ∨ ν
B

(g) = inf
0≤k′1,...,k′n≤m

{
(k′1s1) ∨ . . . ∨ (k′nsn)

} ∨
inf

0≤l′1,...,l′n≤l

{
(l′1s1) ∨ . . . ∨ (l′nsn)

}
≥ inf

0≤k′1,...,k′n≤1, 0≤l′1,...,l′n≤m

{
(k′1s1) ∨ . . . ∨ (k′nsn)

∨
(l′1s1) ∨ . . . ∨ (l′nsn)

}
≥ inf

0≤(k+l)′1,...,(k+l)′n≤1

{
((k + l)′1s1) ∨ . . . ∨ ((k + l)′nsn)

}
= ν

B
(f g).

In the case î = 1 and ki = li = 1, then by (5.2), xki+lii = x2
i = 0. So

µ
B

(
(xk1

1 . . . xknn ).(xl11 . . . x
ln
n )
)

= µ
B

(0) = 1 ≥ µ
B

(xk1
1 . . . xknn )

∧
µ
B

(xl11 . . . x
ln
n )

ν
B

(
(xk1

1 . . . xknn ).(xl11 . . . x
ln
n )
)

= ν
B

(0) = 0 ≤ ν
B

(xk1
1 . . . xknn )

∨
ν
B

(xl11 . . . x
ln
n )

Therefore condition 2) of Definition 5.2 holds.
Also, for all 0 ≤ i < j ≤ n, we have

µ
B

(xjxi) = rj ∧ ri = ri ∧ rj = µ
B

(
(−1)ijqij xixj

)
,

ν
B

(xjxi) = sj ∨ si = si ∨ sj = ν
B

(
(−1)ijqij xixj

)
and this completes the proof.
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