As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Extension of Hukuhara difference in intuitionistic fuzzy set theory

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 15:13, 19 January 2016 by Peter Vassilev (talk | contribs)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/21/4/034-047
Title of paper: Extension of Hukuhara difference in intuitionistic fuzzy set theory
Author(s):
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
said.melliani@gmail.com
M'hamed Elomari
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Razika Ettoussi
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Published in: "Notes on IFS", Volume 21, 2015, Number 4, pages 34–47
Download:  PDF (241  Kb, File info)
Abstract: We proposed to give a sense of Hukuhara's difference in intuitionistic fuzzy theory. First we give the concept of elementary intuitionistic fuzzy theory, precisely the complete metric

space (𝔽1, dp), the later helps us to make sense of the derivative of Hukuhara in the case intuitionistic.

Keywords: Hukuhara difference, Hukuhara derivative, Intuitionistic fuzzy number.
AMS Classification: 03E72
References:
  1. Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  2. Atanassov K. (1999), Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag, Heidelberg.
  3. Diamond, P. & P. Kloeden (1994) Metric Spaces of Fuzzy Sets, World Scientific, Singapore.
  4. Hukuhara, M. (1967) Integration des applications measurables dont la valeur est un compact convexe, Funkciala Ekvacioj, 10, 205–223.
  5. Laksmikantham, V. & R. N. Mohapatra (2003) Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis, New York.
  6. Rodriguez-Muniz, L. J. & M. Lopez-Diaz (2003) Hukuhara derivative of the fuzzy expected value, Fuzzy Sets and Systems, 138, 593–600.
  7. Mahapatra, G. S. & T. K. Roy (2013) Intuitionistic Fuzzy Number and Its Arithmetic Operation with Application on System Failure, Journal of Uncertain Systems, 7(2), 92–107.
  8. Melliani, S., M. Elomari, L. S. Chadli & R. Ettoussi (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  9. Stefanini, L. A. (2010) Generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161, 1564–1584.
  10. Zadeh, L. A. (1975) Concept of a linguistic variable and its application to approximate reasoning, I, Information Sciences, 8, 199–249.
  11. Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
  12. Zadeh L. A. (1978) Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 3–28.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.