As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: 22nd International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets • 18 October 2024 • Warsaw, Poland / online (hybrid mode).
Deadline for submissions: 1 October 2024.

Issue:The convergence of intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/1/37-45
Title of paper: The convergence of intuitionistic fuzzy sets
Author(s):
Said Melliani
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
s.melliani@usms.ma
M'hamed Elomari
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
m.elomari@usms.ma
Lalla Saadia Chadli
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
sa.chadli@yahoo.fr
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 1, pages 37–45
DOI: https://doi.org/10.7546/nifs.2022.28.1.37-45
Download:  PDF (198  Kb, File info)
Abstract: In the present paper, we first introduce a new intuitionistic fuzzy distance. Relationships between three kinds of convergences compared to this distance are studied in this paper. We will give necessary and sufficient conditions to have a convergence equivalence for these four metrics.
Keywords: Intuitionistic fuzzy metric, Levelwise convergence, Supported endographs
AMS Classification: 03F55
References:
  1. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), 87–96.
  2. Brezis, H. (2010). Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer.
  3. Castaing, C., & Valadier, M. (1977). Convex Analysis and Measurable Multifunctions, Springer, Berlin.
  4. Dubois, D., & Prade, H. (1980). Fuzzy Sets and Systems, Academic Press, New York.
  5. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Extension of Hukuhara difference in intuitionistic fuzzy set theory. Notes on Intuitionistic Fuzzy Sets, 21(4), 34–47.
  6. Melliani, S., Elomari, M., Chadli, L.S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric space. Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  7. Kaleva, O. (1985). On The Convergence of fuzzy sets. Fuzzy Sets and Systems, 17 (1), 53–65.
  8. Kloeden, P. E. (1980). Compact supported endographs and fuzzy sets. Fuzzy Sets and Systems, 4, 193–201.
  9. Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91, 552–558.
  10. Zadeh L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.