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1 Introduction

The concept of intuitionistic fuzzy sets is introduced by Atanassov [1]. This notion is a
generalization of the notion of fuzzy sets. By the graph of membership and nonmembership
we can analytically give a sense of the distance between two sets of this type, hence we can
construct a metric space and arrive to understand some topological properties of this space. As
we know, the study of a sequences in such a space has an important role. In [8] the convergence
of fuzzy sets is studied. The author has used a metric defined as the Hausdorff metric between
the supported endographs, or shortly sendographs, of fuzzy sets. Kaleva in [7] investigates three
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kinds of convergences on a space of fuzzy sets, and the relationships between these convergences
are studied.

The authors in [6] build the concept of intuitionistic fuzzy metric space and intuionistic fuzzy
numbers. In [5], Melliani introduced the extension of Hukuhara difference in the intuitionistic
fuzzy case. We will use the idea of O. Kaleva as an inspiration in order to study the convergence
of intuitionistic fuzzy sets with respect to a new distance defined below.

This paper is organized as follows. In Section 2, we recall some notions and properties
concerning the intuitionistic fuzzy sets. The new metric on the set of all intuitionistic fuzzy
sets take place in Section 3. Section 4 is specific to comparing the kind of convergence.

2 Preliminaries

Definition 2.1 ([6]). The set of all intuitionistic fuzzy numbers is given by

IF1 = IF1(R) =
{
〈u, v〉 : R→ [0, 1]2, 0 ≤ u+ v ≤ 1

}
with the following conditions:

1. For each 〈u, v〉 ∈ IF1 is normal, i.e., ∃x0, x1 ∈ R, such that u(x0) = 1 and v(x1) = 1.

2. For each 〈u, v〉 ∈ IF1 is a convex intuitionistic set, i.e., u is fuzzy convex and v is fuzzy
concave.

3. For each 〈u, v〉 ∈ IF1, u is lower continuous and v is upper continuous.

4. cl {x ∈ R, v(x) < 1} is bounded.

Definition 2.2 ([6]). For α ∈ [0, 1], we define the (α, β)-cut of 〈u, v〉 ∈ IF1 by

[〈u, v〉]α,β = {x ∈ X, u(x) ≥ α and v(x) ≤ β} ,

where (α, β) ∈ L∗ = {(x, y) ∈ R2, 0 ≤ x+ y ≤ 1}.

It is clear that the following proposition holds.

Proposition 2.3.
[〈u, v〉]α,β = [〈u, v〉]α ∩ [〈u, v〉]β ,

where [〈u, v〉]α = {x ∈ X, u(x) ≥ α} and [〈u, v〉]β = {x ∈ X, v(x) ≤ β}

Remark 2.4. If α + β = 1, then [〈u, v〉]α ⊂ [〈u, v〉]β .

We get the following proposition.

Proposition 2.5. For all 〈u, v〉, 〈u′, v′〉 ∈ IF1, ∀α, β ∈ L∗, we have

〈u, v〉 = 〈u′, v′〉 ⇐⇒ [〈u, v〉]α,β = [〈u′, v′〉]α,β . (2.1)

Proof. If β = 1 − α, we have u = u′. Now, if α = 0 we get [1 − v]1−β = [1 − v′]1−β which
implies that v = v′.
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We define two operations on IF1 by:

〈u, v〉 ⊕ 〈u′, v′〉 = 〈u ∨ v, u′ ∧ v′〉, ∀〈u, v〉, 〈u′, v′〉 ∈ IF1,

λ〈u, v〉 = 〈λu, λv〉, ∀λ ∈ R, ∀〈u, v〉 ∈ IF1 .

According to Zadeh extension, we have:

[〈u, v〉 ⊕ 〈u′, v′〉]α,β = [〈u, v〉]α,β + [〈u′, v′〉]α,β .
[λ〈u, v〉]α,β = λ [〈u, v〉]α,β .

Definition 2.6. The intuitionistic fuzzy zero is an intuitionistic fuzzy set defined by:

0̃(x) =

(1, 0) x = 0.

(0, 1) x 6= 0.

Definition 2.7. We define the Hausdorff distance between two compact subsets of a metric space
(X, d) by:

dH(A,B) = max

(
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

)
.

Theorem 2.8 ( [7]). If A and B are two compact subsets of a metric space (X, d), then there
exists a ∈ A and b ∈ B such that

dH(A,B) = d(a, b).

Lemma 2.9 ( [3]). Let Cn be an increasing sequence of compact convex subsets of X . If this
sequence admits a convergent subsequence to C compared to dH , then

dH (Cn, C)→ 0

and
C =

⋂
n≥1

⋃
m≥n

Cm

Theorem 2.10 ( [6]). LetM = {Mα,M
α, α ∈ [0, 1]} be a family of subsets in R satisfying the

following conditions:

1. If α ≤ s, then Ms ⊂Mα and M s ⊂Mα, for each α, s ∈ [0, 1].

2. Mα and Ms are nonempty compact convex sets in R for each α ∈ [0, 1].

3. For any non-decreasing sequence αi → α on [0, 1], we have Mα =
⋂
iMαi

and Mα =⋂
iM

αi .

We define u and v by

u(x) =

 0, x /∈M0.

sup
α∈[0,1]

Mα, x ∈M0.

v(x) =

 1, x /∈M0.

1− sup
α∈[0,1]

Mα, x ∈M0.
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Then
〈u, v〉 ∈ IF1

with Mα = [〈u, v〉]α and Mα = [〈u, v〉]α.

Remark 2.11 ([6]). 1. The family {[〈u, v〉]α, [〈u, v〉]α, α ∈ [0, 1]} satisfying statements 1 to 3

of the previous Theorem 2.10.

2. For all α ∈ [0, 1],
[〈u, v〉]α ⊂ [〈u, v〉]α.

Theorem 2.12 ([6]). On IF1 we can define the metric

d∞

(
(u, v), (z, w)

)
=

1

4
sup
0〈α≤1

∣∣∣∣[(u, v)]+
r
(α)−

[
(z, w)

]+
r
(α)

∣∣∣∣
+

1

4
sup
0〈α≤1

∣∣∣∣[(u, v)]+
l
(α)−

[
(z, w)

]+
l
(α)

∣∣∣∣
+

1

4
sup
0〈α≤1

∣∣∣∣[(u, v)]−
r
(α)−

[
(z, w)

]−
r
(α)

∣∣∣∣
+

1

4
sup
0〈α≤1

∣∣∣∣[(u, v)]−
l
(α)−

[
(z, w)

]−
l
(α)

∣∣∣∣.
and

dp (〈u, v〉, 〈u′, v′〉) =
(1
4

∫ 1

0

|[〈u, v〉]+l (α)− [〈u′, v′〉]+l (α)|dα

+
1

4

∫ 1

0

|[〈u, v〉]+r (α)− [〈u′, v′〉]+r (α)|dα

+
1

4

∫ 1

0

|[〈u, v〉]−l (α)− [〈u′, v′〉]−l (α)|dα

+
1

4

∫ 1

0

|[〈u, v〉]−r (α)− [〈u′, v′〉]−r (α)|dα
) 1

p
.

For p ∈ [1,∞), we have that (IF1, dp) is a complete metric space.

We set that

S =
{
〈u, v〉 ∈ IF1, x 7→ u(x) is a concave function, and x 7→ v(x) is a convex function

}
S1 =

{
〈u, v〉 ∈ S, [〈u, v〉]1,0 has one element

}
.

3 New metric on IF1

We define the following mapping:

d1 :


IF1 × IF1 → R+

(〈u, v〉, 〈u′, v′〉) 7−→
∫ 1

0

∫ 1−α
0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
dβdα

+
∫ 1

0

∫ 1−β
0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
dαdβ
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Lemma 3.1. The mapping d1 is well defined.

Proof. Let αn a be nondecreasing sequance and βn a decreasing sequence. We have

lim
n→∞

[
〈u, v〉αn,βn

]
=
⋂
n

[
〈u, v〉αn,βn

]
,

which implies that (α, β)→ [〈u, v〉]α,β is a measurable mapping.

Using the above argument, it is easy to show the following lemma.

Lemma 3.2. Let β ∈ [0, 1]. For all 〈u, v〉, 〈u′, v′〉 ∈ IF1,

α→
∫ 1−α

0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
is a continuous mapping.

Theorem 3.3. (IF1, d
1) is a metric space.

Proof. It remains to prove that d1(〈u, v〉, 〈u′, v′〉) = 0 implies that 〈u, v〉 = 〈u′, v′〉.
By Lemma 3.2 and Remark 4.12,

α→
∫ 1−α

0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
,

β →
∫ 1−β

0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
,

are continuous and nonnegative functions. Thus

d1(〈u, v〉, 〈u′, v′〉) = 0→
∫ 1−α
0

dH

(
[〈u, v〉]α,β, [〈u′, v′〉]α,β

)
=
∫ 1−β
0

dH

(
[〈u, v〉]α,β, [〈u′, v′〉]α,β

)
= 0.

If we set α = β = 0, it follows that d1(〈u, v〉, 〈u′, v′〉) = 0, which implies that u = u′ and
v = v′.

Remark 3.4. If α + β = 1, then by [6] we have

d1 (〈u, v〉, 〈u′, v′〉) = d1 (〈u, v〉, 〈u′, v′〉) .

4 Relation for convergence sets

Definition 4.1. Let 〈un,vn〉 be a sequence of IF1. We say that this sequence is levelwise converging
to 〈u, v〉 if ∀(α, β) ∈ L∗,

dH

(
[〈un, vn〉]α,β , [〈u, v〉]α,β

)
→ 0.

Theorem 4.2. We have the equivalence between (1) and (2), where:
(1) The levelwise convergence.
(2) The convergence in (IF1, d

1).
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Proof. Let (〈un, vn〉) be a sequence which converges levelwise to 〈u, v〉. Since L∗ is compact,
then we have the convergence in (IF1, d

1).
Conversely, by [2, Theorem 4.9, p. 94] there is a subsequence (〈unk

, vnk
〉) which converges to

〈u, v〉 a.e. to respect dH , and by [6] we get dH (〈un, vn〉, 〈u, v〉) −→ 0.

We define the endograph and sendograph of an element 〈u, v〉 in IF1 as follows

ende (〈u, v〉) =
{
(x, (α, β)) ∈ R× L∗, x ∈ [〈u, v〉]α,β

}
and

sende (〈u, v〉) = [〈u, v〉]0,1 × L∗ ∩ inde (〈u, v〉)

and we define the following metric

H (〈u, v〉, 〈u′, v′〉) = d∗ (sende (〈u, v〉) , sende (〈u′, v′〉)) ,

where d∗ is the Hausdorff distance on R× L∗.

Theorem 4.3. The convergence in (IF1, d
1) implies the convergence in (IF1, H).

Proof. Let 〈un, vn〉 be a sequence of IF1 that converges to 〈u, v〉 with respect to the distance
d1. Since dH is positive then by [2, Theorem 4.9, p. 94] there is a subsequence 〈unk

, vnk
〉

that converges a.e to 〈u, v〉 with respect to dH . Now, we use the idea of [6, Lemma 2, p. 4],
we conclude that dH (〈unk

, vnk
〉, 〈u, v〉) → 0. The proof continues in the same way as in [7,

Theorem 3.1, p. 4].

Remark 4.4. The converse of the above implication is not true.

Example 4.5. Define

u(x) =

1, 0 ≤ x ≤ 1.

0, otherwise.

v(x) =

0, 0 ≤ x ≤ 1.

1, otherwise.

un(x) =

1 + x−1
n
, 0 ≤ x ≤ 1.

0, otherwise.

u(x) =

1−x
n
, 0 ≤ x ≤ 1.

1, otherwise.

Clearly, H (〈un, vn〉, 〈u, v〉)→ 0. But d1 (〈un, vn〉, 〈u, v〉) = (2− (α + β)) dH (L∗, [0, 1]).

Now, we will study the converse of the previous results.
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Lemma 4.6. Let 〈un, vn〉 be a sequence in S converging levelwise to 〈u, v〉. Then

lim
n→∞

dH([〈un, vn〉]0,1, [〈u, v〉]0,1) = 0.

Proof. Using Proposition 2.5 and the inequality dH (A ∩B,C ∩D) ≤ dH (A,C) + dH (B,D),
we have

dH([〈un, vn〉]0,1, [〈u, v〉]0,1) ≤ dH
(
u0n, u0

)
+ dH

(
(1− v)0n, (1− v)0

)
.

Now, [7, Lemma 3.1] answers the question.

Lemma 4.7. Let 〈u, v〉 ∈ S and (α′, β′) ∈ L∗ be fixed. Then

g(α, β) = dH

(
[〈u, v〉]α,β, [〈u, v〉]α′,β′

)
is continuous at (α, β).

Proof. Just using the following inequality

g(α, β) ≤ dH

(
uα, [〈u, v〉]α′,β′

)
+ dH

(
(1− v)1−β, [〈u, v〉]α′,β′

)
,

the proof follows from by [7, Lemma 3.2].

It is easy to observe that:

Corollary 4.8. The function g(α, β) = dH
(
[〈u, v〉]α,β, [〈u, v〉]α′,β′)

is continuous.

Also by the previous inequality we get the following lemma.

Lemma 4.9. Let (αn, βn) be a sequence of L∗ converging to (α, β) ∈ L∗. Then under the
assumptions of Lemma 4.6:

lim
n→∞

dH
(
[〈u, v〉]α,β, [〈un, vn〉]αn,βn

)
= 0.

Theorem 4.10. The levelwise convergence implies the convergence in (S, d1).

Proof. Let ε > 0 be arbitrary. Since 〈un, vn〉 converges levelwise to 〈u, v〉, then

dH (〈un, vn〉, 〈u, v〉)→ 0,

but there is N ∈ N such that

n ≥ N ⇒ d1 (〈un, vn〉, 〈u, v〉) ≤ 2dH (〈un, vn〉, 〈u, v〉)→ 0,

as desired.

Lemma 4.11. Let 〈u, v〉 ∈ S. The mapping α →
∫ 1−α
0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
is a

continuous function.
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Proof. If (α, β) = (0, 1). Let αn → 0 and βn → 1. We have

lim
n→∞

dH

(
[〈u, v〉]αn,βn , [〈u, v〉]0,1

)
= lim

n→∞
dH ({u ≥ αn} ∩ {v ≤ βn}, {u ≥ 0} ∩ {v ≤ 1}) .

By [7], we have 
lim
n→∞

dH ({u ≥ αn}, {u ≥ 0}) = 0,

lim
n→∞

dH ({v ≤ βn}, {v ≤ 1}) = 0,

which implies that

lim
n→∞

dH

(
[〈u, v〉]αn,βn , [〈u, v〉]0,1

)
= 0.

Thus, the continuity at (0, 1) is proved. Now, we consider the case when α > 0 and β < 1.

i) Let αn ↗ α and βn ↘ β with αn is a nondecreasing sequence and βn is a decreasing
sequence. By Lemma 2.9, we getdH

(
{u ≥ αn},

⋂
n≥1
⋃
k≥n {u ≥ αk}

)
= 0,

dH

(
{v ≤ βn},

⋂
n≥1
⋃
k≥n {v ≤ βk}

)
= 0,

which implies that

dH

(
{u ≥ αn} ∩ {v ≤ βn},

⋂
n≥1

⋃
k≥n

{u ≥ αk} ∩ {v ≤ βk}

)
= 0.

Thus, αn ↗→ α and βn ↘ β where αn is a nondecreasing sequence and βn is a decreasing
sequence.

dH

(
[〈u, v〉]αn,βn ,

⋂
n≥1

⋃
k≥n

[〈u, v〉]α,β
)

= 0,

which implies the right continuity.

ii) Let αn → α and βn → β with αn is a decreasing sequence and βn is a nondecreasing
sequence. We get ⋂

n≥1

⋃
k≥n

[〈u, v〉]α,β =
⋂
n≥1

[〈u, v〉]αn,βn .

By [9, Lemma 2.1], we have⋂
n≥1

⋃
k≥n

[〈u, v〉]αk,βk = [〈u, v〉]α,β ,

which implies the left continuity.

Remark 4.12. If α ∈ [0, 1], then β →
∫ 1−β
0

dH

(
[〈u, v〉]α,β , [〈u′, v′〉]α,β

)
is a continuous

function.
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Theorem 4.13. Let 〈un, vn〉 be a sequence in S1. If 〈un, vn〉 converges to 〈u, v〉 ∈ S1 in (S1, H),
then it also converges levelwise to 〈u, v〉.

Proof. By the inequality used in the previous proof of all lemmas and [7, Theorem 3.2] we can
affirm that 〈un, vn〉 converges to 〈u, v〉 ∈ (S1, d1). Thus, dH (〈un, vn〉, 〈u, v〉) → 0, a.e., we
conclude by using the idea of [6, Lemma 2, p. 4].

Combining the previous theorems, we get the following theorem.

Theorem 4.14. The levelwise convergence implies the equivalence between the convergence in
(d1,S1) and (H,S1).

5 Conclusions

In this paper, we introduced a new distance on the set of all intuitionistic fuzzy numbers. We
studied the convergence of intuitionistic fuzzy sets in such metric space and we compare this
convergence with three kinds of metrics on IF1. Finally, we gave necessary and sufficient
conditions in order to have the equivalence between this new metric and the others.
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