As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy evolution problem with nonlocal conditions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/3/215-229
Title of paper: Intuitionistic fuzzy evolution problem with nonlocal conditions
Author(s):
Hamid Sadiki
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
h.sadiki@usms.ma
Khadija Oufkir
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
oufkirkhadijabzou@gmail.com
Said Melliani
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
s.melliani@usms.ma
M'hamed El Omari
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
m.elomari@usms.ma
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 3, pages 215–229
DOI: https://doi.org/10.7546/nifs.2024.30.3.215-229
Download:  PDF (264  Kb, File info)
Abstract: In this manuscript, we investigate the existence and uniqueness of solutions for the intuitionistic fuzzy evolution problem with non-local conditions, employing a generalized Caputo derivative [math]\displaystyle{ ^C_{gH}D_{0^+}^{\gamma} }[/math] of order [math]\displaystyle{ 0 \lt \gamma \lt 1 }[/math]. Our methodology involves utilizing the intuitionistic fuzzy semigroup and the concept of contraction mapping.
Keywords: Generalized intuitionistic fuzzy Caputo derivative, Intuitionistic fuzzy fractional evolution problem, Intuitionistic fuzzy semi-group, Mean-square calculus.
AMS Classification: 03E72, 08A72.
References:
  1. Arhrrabi, E., Elomari, M., Melliani, S., & Chadli, L. S. (2023). Fuzzy fractional boundary value problems with Hilfer fractional derivatives. Asia Pacific Journal of Mathematics, 10, Article 4.
  2. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Ben Amma, B., Melliani, S., & Chadli, L. S. (2018). The Cauchy problem for intuitionistic fuzzy differential equations. Notes on Intuitionistic Fuzzy Sets, 24(1), 37–47.
  4. Elomari, M., Melliani, S., & Chadli, L. S. (2016). Evolution problem with intuitionistic fuzzy fractional derivative. Notes on Intuitionistic Fuzzy Sets, 22(3), 80–90.
  5. Elomari, M., Melliani, S., & Chadli, L. S. (2017). Solution of intuitionistic fuzzy fractional differential equations. Annals of Fuzzy Mathematics and Informatics, 13(3), 379–391.
  6. Lakshmikantham, V., & Leela, S. (1981). Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, New York.
  7. Melliani, S., Bakhadach, I., Elomari, M., & Chadli, L. S. (2018). Intuitionistic fuzzy Dirichlet problem. Notes on Intuitionistic Fuzzy Sets, 24(4), 72–84.
  8. Melliani, S., Elomari, M., Atraoui, M., & Chadli, L. S. (2015). Intuitionistic fuzzy differential equation with nonlocal condition. Notes on Intuitionistic Fuzzy Sets, 21(4), 58–68.
  9. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric space. Notes on Intuitionistic Fuzzy Sets, 211, 43–53.
  10. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Extension of Hukuhara difference in intuitionistic fuzzy set theory. Notes on Intuitionistic Fuzzy Sets, 21(4), 34–47.
  11. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy fractional equation. Notes on Intuitionistic Fuzzy Sets, 21(4), 76–89.
  12. Melliani, S., Elomari, M., & Elmfadel, A. (2017). Intuitionistic fuzzy fractional boundary value problem. Notes on Intuitionistic Fuzzy Sets, 23(1), 31–41.
  13. Oufkir, K., El Mfadel, A., Melliani, S., Elomari, M., & Sadiki, H. (2023). On fractional evolution equations with an extended psi-fractional derivative. Filomat, 37(21), 7231–7240.
  14. Parvathi, R., & Radhika, C. (2015). Intuitionistic fuzzy random variable. Notes on Intuitionistic Fuzzy Sets, 21(1), 69–80.
  15. Radstrom, H. (1952). An embedding theorem for spaces of convex sets. Proceedings of the American Mathematical Society, 3, 165–169.
  16. Zadeh, L. A. (1965) Fuzzy sets. Information and Control, 8, 338–353.
  17. Zainali, Z., Akbari, M. G., & Noughabi, H. A. (2015). Intuitionistic fuzzy random variable and testing hypothesis about its variance. Soft Computing, 19, 2681–2689
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.