Title of paper:
|
Intuitionistic fuzzy evolution problem with nonlocal conditions
|
Author(s):
|
Hamid Sadiki
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
|
h.sadiki@usms.ma
|
Khadija Oufkir
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
|
oufkirkhadijabzou@gmail.com
|
Said Melliani
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
|
s.melliani@usms.ma
|
M'hamed El Omari
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
|
m.elomari@usms.ma
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 3, pages 215–229
|
DOI:
|
https://doi.org/10.7546/nifs.2024.30.3.215-229
|
Download:
|
PDF (264 Kb, File info)
|
Abstract:
|
In this manuscript, we investigate the existence and uniqueness of solutions for the intuitionistic fuzzy evolution problem with non-local conditions, employing a generalized Caputo derivative [math]\displaystyle{ ^C_{gH}D_{0^+}^{\gamma} }[/math] of order [math]\displaystyle{ 0 \lt \gamma \lt 1 }[/math]. Our methodology involves utilizing the intuitionistic fuzzy semigroup and the concept of contraction mapping.
|
Keywords:
|
Generalized intuitionistic fuzzy Caputo derivative, Intuitionistic fuzzy fractional evolution problem, Intuitionistic fuzzy semi-group, Mean-square calculus.
|
AMS Classification:
|
03E72, 08A72.
|
References:
|
- Arhrrabi, E., Elomari, M., Melliani, S., & Chadli, L. S. (2023). Fuzzy fractional boundary value problems with Hilfer fractional derivatives. Asia Pacific Journal of Mathematics, 10, Article 4.
- Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Ben Amma, B., Melliani, S., & Chadli, L. S. (2018). The Cauchy problem for intuitionistic fuzzy differential equations. Notes on Intuitionistic Fuzzy Sets, 24(1), 37–47.
- Elomari, M., Melliani, S., & Chadli, L. S. (2016). Evolution problem with intuitionistic fuzzy fractional derivative. Notes on Intuitionistic Fuzzy Sets, 22(3), 80–90.
- Elomari, M., Melliani, S., & Chadli, L. S. (2017). Solution of intuitionistic fuzzy fractional differential equations. Annals of Fuzzy Mathematics and Informatics, 13(3), 379–391.
- Lakshmikantham, V., & Leela, S. (1981). Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, New York.
- Melliani, S., Bakhadach, I., Elomari, M., & Chadli, L. S. (2018). Intuitionistic fuzzy Dirichlet problem. Notes on Intuitionistic Fuzzy Sets, 24(4), 72–84.
- Melliani, S., Elomari, M., Atraoui, M., & Chadli, L. S. (2015). Intuitionistic fuzzy differential equation with nonlocal condition. Notes on Intuitionistic Fuzzy Sets, 21(4), 58–68.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric space. Notes on Intuitionistic Fuzzy Sets, 211, 43–53.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Extension of Hukuhara difference in intuitionistic fuzzy set theory. Notes on Intuitionistic Fuzzy Sets, 21(4), 34–47.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy fractional equation. Notes on Intuitionistic Fuzzy Sets, 21(4), 76–89.
- Melliani, S., Elomari, M., & Elmfadel, A. (2017). Intuitionistic fuzzy fractional boundary value problem. Notes on Intuitionistic Fuzzy Sets, 23(1), 31–41.
- Oufkir, K., El Mfadel, A., Melliani, S., Elomari, M., & Sadiki, H. (2023). On fractional evolution equations with an extended psi-fractional derivative. Filomat, 37(21), 7231–7240.
- Parvathi, R., & Radhika, C. (2015). Intuitionistic fuzzy random variable. Notes on Intuitionistic Fuzzy Sets, 21(1), 69–80.
- Radstrom, H. (1952). An embedding theorem for spaces of convex sets. Proceedings of the American Mathematical Society, 3, 165–169.
- Zadeh, L. A. (1965) Fuzzy sets. Information and Control, 8, 338–353.
- Zainali, Z., Akbari, M. G., & Noughabi, H. A. (2015). Intuitionistic fuzzy random variable and testing hypothesis about its variance. Soft Computing, 19, 2681–2689
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|