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1 Introduction

The theory of fuzzy subsets, introduced by Lotfi Zadeh in 1965 [16], has become a foundational
concept in fuzzy logic. It was not until 1986, however, that Atanassov expanded this notion by
introducing the concept of intuitionistic fuzzy subsets [2]. This extension, known as the theory
of intuitionistic fuzzy sets, has gained significant importance and has become a critical area for
investigating various problems.

In [4], the authors examine the following nonlinear intuitionistic fuzzy fractional evolution
problem: C

gHD
qx(t) = Ax(t) + f(t, x(t))

x(t0) = x0 ∈ IF 1,
(1)

Additionally, the authors in [11] demonstrated the existence and uniqueness of solutions for
the following non-local intuitionistic fuzzy fractional differential equations:x′(t) = Ax(t) + f(t, x(t))

x(0) = x0 + g(t1, t2, . . . , tp, x(.)),
(2)

In this paper, we investigate the existence and uniqueness of solutions for a specific intuitionistic
fuzzy fractional evolution problem with non-local conditions:C

gHD
γ
0+u(t) = Au(t) + F(t, u(t)), t ∈ I = [0, T ]

u(0) = u0 + h(t1, t2, . . . , tn, u(.)),
(3)

where A : IF 1 → IF 1 is an operator generating an intuitionistic fuzzy semigroup (S(t))t≥0 on
IF 1, C

gHD
γ
0+ is the generalized Caputo fractional derivative of order γ ∈ (0, 1), u0 ∈ IF 1, and

F : I × IF 1 → IF 1 and h are given functions.
To address this problem, we will first introduce the foundational concepts and necessary

results from intuitionistic fuzzy set theory. We will then explore the generalized Caputo derivative
for intuitionistic fuzzy sets and the embedding theorem. Additionally, we will investigate the
intuitionistic fuzzy semigroup and introduce relevant notions for the L2 space in Section 2.

In Section 3, we will present specific assumptions related to our problem, derive the solution
formula for Problem 3, and prove both the existence and uniqueness of its solution.

Finally, Section 4 will provide a concise conclusion.

2 Preliminaires

In this part we will try to present all the basic concepts necessary in our study.

Definition 1. [9] The set of intuitionistic fuzzy numbers is defined by:

IF 1 = IF (R) = {⟨u, v⟩ : R −→ [0, 1]2 , 0 ≤ u+ v ≤ 1},

and it checks the following properties:
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1) For all ⟨u, v⟩ ∈ IF 1 is normal, i.e.: There exist a, b ∈ R such that: u(a) = 1 and v(b) = 1.

2) For all ⟨u, v⟩ ∈ IF 1 is intuitionistic convex, that is to say:

• u is fuzzy convex: u(λa+ (1− λ)b) ≥ min{u(a), u(b)} , ∀a, b ∈ R , ∀λ ∈ [0, 1].

• v is fuzzy concave: v(λa+ (1− λ)b) ≤ max{v(a), v(b)} , ∀a, b ∈ R , ∀λ ∈ [0, 1].

3) For all ⟨u, v⟩ ∈ IF 1, u is lower continuous and v is upper continuous.

4) supp⟨u, v⟩ = {a ∈ R , v(a) < 1} is bounded.

And we define zero intuitionistic fuzzy set by:

0̃(a) =

{
(1, 0) ; a = 0,

(0, 1) ; a ̸= 0

Definition 2. [9] For α ∈ [0, 1], we define the upper and lower α-cut as follows:

[⟨u, v⟩]α = {a ∈ R , u(a) ≥ α}.
[⟨u, v⟩]α = {a ∈ R , v(a) ≤ 1− α}.

And we can write:
[⟨u, v⟩]α =

[
[⟨u, v⟩]+l (α), [⟨u, v⟩]+r (α)

]
and

[⟨u, v⟩]α =
[
[⟨u, v⟩]−l (α), [⟨u, v⟩]−r (α)

]
.

With,

[⟨u, v⟩]+l (α) = inf{x ∈ Rn ; u(x) ≥ α},
[⟨u, v⟩]+r (α) = sup{x ∈ Rn ; u(x) ≥ α},
[⟨u, v⟩]−l (α) = inf{x ∈ Rn ; v(x) ≤ 1− α},
[⟨u, v⟩]−r (α) = sup{x ∈ Rn ; v(x) ≤ 1− α}.

Proposition 1. [9] Let ⟨u1, v1⟩, ⟨u2, v2⟩ ∈ IF 1, we have :

1) ⟨u1, v1⟩ = ⟨u2, v2⟩ ⇔ [⟨u1, v1⟩]α = [⟨u2, v2⟩]α , [⟨u1, v1⟩]α = [⟨u2, v2⟩]α , ∀α ∈ [0, 1].

2) (⟨u1, v1⟩ ⊕ ⟨u2, v2⟩) (x) =
(

sup
z=x+y

min(u1(x), u2(y)), inf
z=x+y

max(v1(x), v2(y))

)
,

and according to the extension of Zadeh, we have:

[⟨u1, v1⟩ ⊕ ⟨u2, v2⟩]α = [⟨u1, v1⟩]α + [⟨u2, v2⟩]α ,
[⟨u1, v1⟩ ⊕ ⟨u2, v2⟩]α = [⟨u1, v1⟩]α + [⟨u2, v2⟩]α .
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3) λ⟨u1, v1⟩ = ⟨λu1, λv1⟩ , ∀λ ∈ R,

and according to the extension of Zadeh, we have:

[λ⟨u1, v1⟩]α = λ [⟨u1, v1⟩]α ,
[λ⟨u1, v1⟩]α = λ [⟨u1, v1⟩]α .

If λ = 0, then λ⟨u1, v1⟩ = 0̃.

Theorem 2. [9] Let M = {Mα,Mα, α ∈ [0, 1]} be the family of subsets of R, for which the
following properties are verified:

1) Mα ⊂ Mα for all α ∈ [0, 1].

2) α ≤ β ⇒ Mβ ⊂ Mα and Mβ ⊂ Mα for all α, β ∈ [0, 1].

3) Mα and Mα are two non-empty compact convex subsets in R for all α ∈ [0, 1].

4) For all non-decreansing sequences αi → α on [0, 1], we have:

Mα = ∩iMαi
, Mα = ∩iMαi .

Then, we define u and v by:

u(a) =

0 if a /∈ M0,

sup{α ∈ [0, 1] : a ∈ Mα} if a ∈ M0,

v(a) =

1 if a /∈ M0,

1− sup{α ∈ [0, 1] : a ∈ Mα} if a ∈ M0.

Therefore, ⟨u, v⟩ ∈ IF 1, Mα = [⟨u, v⟩]α and Mα = [⟨u, v⟩]α.

Remark 1. i) The family {[⟨u, v⟩]α , [⟨u, v⟩]
α , α ∈ [0, 1]} satisfies the previous properties

of Theorem 2.

ii) For all α ∈ [0, 1] we have:
[⟨u, v⟩]α ⊂ [⟨u, v⟩]α .

Definition 3. [9] Let ⟨u1, v1⟩, ⟨u2, v2⟩ ∈ IF 1, we define the following two distances on IF 1:

d∞ (⟨u1, v1⟩, ⟨u2, v2⟩) =
1

4
sup

α∈(0,1]
| [⟨u1, v1⟩]+r (α)− [⟨u2, v2⟩]+r (α) |

+
1

4
sup

α∈(0,1]
| [⟨u1, v1⟩]+l (α)− [⟨u2, v2⟩]+l (α) |

+
1

4
sup

α∈(0,1]
| [⟨u1, v1⟩]−r (α)− [⟨u2, v2⟩]−r (α) |

+
1

4
sup

α∈(0,1]
| [⟨u1, v1⟩]−l (α)− [⟨u2, v2⟩]−l (α) |,

and, for p ∈ [0; +∞[ we have:
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dp (⟨u1, v1⟩, ⟨u2, v2⟩) = (
1

4

∫ 1

0

| [⟨u1, v1⟩]+r (α)− [⟨u2, v2⟩]+r (α) |p dα

+
1

4

∫ 1

0

| [⟨u1, v1⟩]+l (α)− [⟨u2, v2⟩]+l (α) |p dα

+
1

4

∫ 1

0

| [⟨u1, v1⟩]−r (α)− [⟨u2, v2⟩]−r (α) |p dα

+
1

4

∫ 1

0

| [⟨u1, v1⟩]−l (α)− [⟨u2, v2⟩]−l (α) |p dα)
1
p ),

then, (IF 1, dp) is a complete metric space.

Now, we move on to define the Hukuhara difference between two intuitionistic fuzzy numbers.

Definition 4. [10] Let ⟨u1, v1⟩, ⟨u2, v2⟩ ∈ IF 1, then the generalized difference of Hukuhara
between two numbers of IF 1 is defined by:

⟨u1, v1⟩ ⊖gH ⟨u2, v2⟩ = ⟨u3, v3⟩ ⇔ ⟨u1, v1⟩ = ⟨u2, v2⟩ ⊕ ⟨u3, v3⟩.

For what follows, let g : [0, T ] −→ IF 1 be a function with an intuitionistic fuzzy value, then
its representation α−level is:

[g]α = [gα,l, gα,r] ,

[g]α =
[
gα,l, gα,r

]
,

with, gα,l, gα,r, gα,l and gα,r are the bounds (left and right) of the function at the α−level.

Definition 5. [10] Let g : [0, T ] −→ IF 1, then the generalized Hukuhara derivative of g at t0 is
defined by:

g
′

gH(t0) = lim
t→t0

g(t)⊖gH g(t0)

t− t0
,

if g
′
gH(t0) ∈ IF 1, and we say that g is generalized Hukuhara differentiable (gH−differentiable)

at t0.

Therefore, if gα,l, gα,r, gα,l and gα,r should be continuous functions at t0 and should be
differentiable at t0, and their derivatives should exist, we can separate two types of
gH−differentiability for a function with value in IF 1. We say that g is [(i)− gH]−differentiable
at t0 if: [

g
′

gH

]
α
=

[
(gα,l)

′
, (gα,r)

′
]
,[

g
′

gH

]α
=

[(
gα,l

)′
, (gα,r)

′
]
.

We say that g is [(ii)− gH]−differentiable at t0 if:[
g

′

gH

]
α
=

[
(gα,r)

′
, (gα,l)

′
]
,[

g
′

gH

]α
=

[
(gα,r)

′
,
(
gα,l

)′]
.
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Remark 2. We can define the generalized derivative of higher order by:{
g0 = g,

g
(n)
gH = (g

(n−1)
gH )

′
gH .

Definition 6. [10] Let g : [0, T ] −→ IF 1, we say that g is of class Cm, m ∈ N if g(m)
gH exists

and continues, with respect to metric d∞.

If gα,l, gα,r, gα,land gα,r are Riemann integrable on [0, T ], then,∫
[0,T ]

g =

{[∫
[0,T ]

gα,l,

∫
[0,T ]

gα,r

]
,

[∫
[0,T ]

gα,l,

∫
[0,T ]

gα,r
]}

.

Definition 7. [10] Let g : [0, T ] −→ IF 1, we say that g is integrable on [0, T ], if gα,l, gα,r, gα,l

and gα,r are integrable on [0, T ].

2.1 Intuitionistic fuzzy generalized Caputo derivative

Let g : [0, T ] −→ IF 1 be an intuitionistic fuzzy-valued integrable function on [0, T ], and let
γ ∈ (n− 1, n] with n ∈ N∗. Then its α−levels are defined by:

[g]α = [gα,l, gα,r] ,

[g]α =
[
gα,l, gα,r

]
,

where, gα,l, gα,r, gα,l, gα,r ∈ Cn([O, T ]).
Then,

Nα =

[
1

Γ(γ)

∫ t

0

(t− s)γ−n−1(gα,l)
(n)(s),

1

Γ(γ)

∫ t

0

(t− s)γ−n−1(gα,r)
(n)(s)

]
and

N α =

[
1

Γ(γ)

∫ t

0

(t− s)γ−n−1(gα,l)(n)(s),
1

Γ(γ)

∫ t

0

(t− s)γ−n−1(gα,r)(n)(s)

]
.

Proposition 3. The family {Nα,N α, α ∈ (0, 1)} defines an intuitionistic fuzzy element.

Definition 8. The intuitionistic fuzzy preceding item is called the generalized Caputo derivative
of g, we denote it by CDγ

0+g. We say that g is cf [(i)− gH]−differentiable at t0 if:[
C
gHD

γ
0+g

]
α
=

[
CDγ

0+gα,l,
C Dγ

0+gα,r
]
,[

C
gHD

γ
0+g

]α
=

[
CDγ

0+g
α,l,C Dγ

0+g
α,r

]
,

and that g is cf [(ii)− gH]−differentiable at t0 if:[
C
gHD

γ
0+g

]
α
=

[
CDγ

0+gα,r,
C Dγ

0+gα,l
]
,[

C
gHD

γ
0+g

]α
=

[
CDγ

0+g
α,r,C Dγ

0+g
α,l
]
.
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As in the previuos definition, we will give the difinition of intuitionistic fuzzy fractional
Riemann–Liouville integral. If the α−levels of g : [0, T ] −→ IF 1 are given by:

[g]α = [gα,l, gα,r] ,

[g]α =
[
gα,l, gα,r

]
.

and gα,l, gα,r, g
α,l, gα,r are Riemann integrable on (0, T ]. Since the family:{

[g]α = [gα,l, gα,r] , [g]
α =

[
gα,l, gα,r

]}
builds an intuitionistic element and the integral preserves the monotony, then the family
{Aα,Aα, α ∈ (0, 1)}, where:

Aα =

[
1

Γ(γ)

∫ t

0

(t− s)γ−1gα,l(s),
1

Γ(γ)

∫ t

0

(t− s)γ−1gα,r(s)

]
,

and

Aα =

[
1

Γ(γ)

∫ t

0

(t− s)γ−1gα,l(s),
1

Γ(γ)

∫ t

0

(t− s)γ−1gα,r(s)

]
,

defines an intuitionistic fuzzy element, which is the Riemann–Liouville fractional integral of g

on (0, T ), which we denote:
1

Γ(γ)

∫ t

0
(t− s)γ−1g(s).

Definition 9. The Riemann–Liouville fractional integral of g on (0, T ) is defined as:

gHI
γ
0+g(t) =

1

Γ(γ)

∫ t

0

(t− s)γ−1g(s)ds

with, γ ∈ (n− 1, n).

2.2 Embedding theorem and intuitionistic fuzzy α−semigroup

Since the elements of IF 1 are closed (Hausdorff topology) and convex, so we can apply the result
of [15].

Theorem 4. We can extend IF 1 in a normed space.

Proof. See [4].

Theorem 5. There exists a Banach space X such that IF 1 can be embedded as a convex cone C
with vertex 0 in X . Furthermore, the following conditions hold true:

1. The embedding j is isometric,

2. The addition in X induces the addition in IF 1,

3. The multiplication by a non-negative real number in X induces the corresponding operation
in IF 1,

4. C − C = {a− b, a, b ∈ C} is dense in X ,

5. C is closed.
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Definition 10. A continuous one-parameter intuitionistic fuzzy α−semigroup {Tα(t), t ≥ 0} of
operators on IF 1 is defined by the following conditions:

1. For any fixed t ≥ 0, Tα(t) is a continuous operator defined on IF 1 into IF 1.

2. For any ⟨u, v⟩, Tα(t) ⟨u, v⟩ is strongly continuous in t, with the metric d1.

3. Tα

(
(t+ s)

1
α

)
= Tα

(
(t)

1
α

)
Tα

(
(s)

1
α

)
.

4. For all ⟨u, v⟩ , ⟨x, y⟩ ∈ IF 1 we have:

d1 (Tα(t) ⟨u, v⟩ , Tα(t) ⟨x, y⟩) ≤ Mewtα , ∀t ≥ 0 , M > 0.

We call such a family Tα(t) simply intuitionistic fuzzy α−semigroup of type w. The strict
α−infinitesimal generator Aα of an intuitionistic fuzzy α−semigroup Tα(t) is defined by:

Aαx = lim
t→0

T (α)
α (t) ⟨u, v⟩ , ⟨u, v⟩ ∈ IF 1.

The right side exists in IF 1.
We define the domain of Aα, by:

D(Aα) =
{
⟨u, v⟩ ∈ IF 1, lim

t→0
T (α)
α (t) ⟨u, v⟩ exist

}
.

Lemma 1. If the family {Tα(t), t ≥ 0} is an intuitionistic fuzzy α−semigroup of type w, then
j Tα(t) j

−1 is a nonlinear α−semigroup of type w on C.

Lemma 2. If Aα is an intuitionistic fuzzy infinitesimal generator of an intuitionistic fuzzy
α−semigroup of type w{Tα(t)}t≥0. Then j Aα j

−1 is the infinitesimal generator of j Tα(t) j
−1.

Proof. See [4].

2.3 The L2−space

Let (Ω,A,P) be a complete probability space.

Definition 11. (cf. [14, 17]) An intuitionistic fuzzy random variable * (IFRV for short) is a Borel
measurable function X : (Ω,A) −→ (IF 1, d∞).

The norm ∥ ∥ of an intuitionistic fuzzy number (u, v) ∈ IF 1 is defined by:

∥ (u, v) ∥ = d∞
(
(u, v), 0(1,0)

)
=∥ [(u, v)]0 ∥ =

1

2
sup

a∈[(u,v)]0
| a | +1

2
inf

b∈[(u,v)]0
| b | .

If E ∥ X ∥< ∞, then the expected value EX exists. X is called a second-order IFRV, provided
E ∥ X ∥2< ∞. Let,

L(Ω,A,P) =

{
X | X is an IFRV with

∫
Ω

d∞(X, 0(1,0))
2dP(ω) < ∞

}
.

—————————–
* The concept of “intuitionistic fuzzy random variable” has already been researched, though in a completely

different sense, by Parvathi and Radhika in [14], and another approach to the concept is also discussed by Zainali,
Akbari and Noughabi in [17].
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The family of all second-order IFRVs is denoted by L2(IF
1) (L2 for short). Any two IFRVs X

and Y are called equivalent if P(X ̸= Y ) = 0. All of the equivalent elements in L2 are identified.
Define:

φ(X, Y ) =

(∫
Ω

d∞(X, Y )2dP
) 1

2

, X, Y ∈ L2.

The norm ∥ X ∥2 of an element X ∈ L2 is defined by:

∥ X ∥2 = φ(X, 0(1,0)) =

(∫
Ω

d∞(X, 0(1,0))
2dP

) 1
2

.

Proposition 6. (L2, φ) is a complete metric space.

In addition φ satisfies that, for any X, Y, Z ∈ L2 , λ, k ∈ R:

1) φ(X + Z, Y + Z) = φ(X, Y ).

2) φ(λX, λY ) =| λ | φ(X, Y ).

3) φ(λX, kX) ≤| λ− k |∥ X ∥2.

Definition 12. Let (Xn)n≥1 be a sequence in L2, we call that Xn converges in mean square, or
ms-converges, to X as n → ∞, if φ(Xn, X) → 0, and we write Xn →m.s X or limn→∞ Xn = X .

Definition 13. Let T be a finite or an infinite interval in R. A mapping X : T −→ L2 is called
a second-order intuitionistic fuzzy stochastic process (IFSP for short). If X is continuous at a
t ∈ T with respect to the metric φ, then we call X continuous in mean square or ms-continuous
at t. If X is ms-continuous at every t ∈ T , then we call X ms-continuous.

3 Nonlocal intuitionistic fuzzy evolution problem

In this part, we are interested in studying the existence and uniqueness of the solution to the
following problem: C

gHD
γ
0+u(t) = Au(t) + F(t, u(t)), t ∈ I = [0, T ]

u(0) = u0 + h(t1, t2, . . . , tn, u(.)),
(4)

with 0 < t1 < t2 < · · · < tn < T .
We assume the following hypotheses:

(H1) A : D(A) ⊂ IF 1 −→ IF 1 is an operator that generates a strongly continuous semigroup
(S(t))t≥0. There are two constants M and ω ∈ R∗

+ such that:

φ(S(t)u,S(t)v) ≤ Meωtφ(u, v) , ∀t ≥ 0 , u, v ∈ L2 ∩D(A).

(H2) F : I × L2 −→ L2 is an ms-continuous intuitionistic fuzzy mapping with respect to t,
which satisfies a generalized Lipschitz condition, i.e., there exists a constant MF such that:

φ(F(t, u),F(t, v)) ≤ MFφ(u, v) , ∀t ≥ 0 , u, v ∈ L2.
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(H3) h : In × L2 −→ L2 satisfies a generalized Lipschitz condition, i.e., there exists a constant
Mh such that:

φ(h(t1, t2, . . . , tn, u(.)), h(t1, t2, . . . , tn, v(.))) ≤ Mhφ(u, v) , ∀t ∈ I , u, v ∈ L2.

Lemma 3. Let F : [a, b] −→ IF 1 be a fuzzy-valued function such that F ′
gH ∈ CIF 1

([a, b]) ∩
LIF 1

([a, b]), then:

gHI
γ
0+

(
C
gHD

γ
0+F

)
(t) = F(t)⊖gH F(a).

We denote:

sgn(u) =

{
+, if u is cf [(i)− gH]−differentiable,

⊖(−1), if u is cf [(ii)− gH]−differentiable.

Definition 14. Let u : I −→ L2.

1. If u is cf [(i)−gH]−differentiable, then the problem (4) is equivalent to the integral equation:

u(t) = S(t) [u0 + h(t1, t2, . . . , tn, u(.))] +
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds.

2. If u is cf [(ii) − gH]−differentiable, then the problem (4) is equivalent to the integral
equation:

u(t) = S(t) [u0 + h(t1, t2, . . . , tn, u(.))]⊖
−1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds.

Theorem 7. [6] Consider V : T −→ X to be a set of continuous functions. Then V is a relative
compact set if and only if V is equicontinuous and for any t ∈ T , V(t) is a relative compact set
in X .

Theorem 8. [6] Let V be a closed convex subset of a Banach space X . If A : V −→ V is
continuous and V = A(V) is compact, then A has a fixed point in V.

Theorem 9. Suppose that the hypotheses (H1)–(H3) are verified, then problem (4) admits a
unique solution in [0, θ] with:

θ = min

{
T,

1

ω
log

(
σ − β

MKh

+
KF

Γ(γ + 1)

)
,
1

ω
log

(
1

MMh

+
MF

Γ(γ + 1)

)}
.

With,
φ(F(t, ), 0(1,0)) ≤ KF ,

φ(h(t1, t2, . . . , tn, u(.)), 0(1,0)) ≤ Kh.

Proof. Just before commencing the demonstration, we give:

H(u, v) = sup
0≤t≤θ

φ(u(t), v(t)).
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Let B = {u ∈ L2,H(u, u0) ≤ σ} be the space of mean-square-continuous fuzzy intuitionistic
applications.
Let R : B −→ B be an operator defined by:

Ru(t) =


S(t) [u0 + h(t1, t2, . . . , tn, u(.))] +

1

Γ(γ)

∫ t

0
(t− s)γ−1F(s, u(s))ds,

S(t) [v0 + h(t1, t2, . . . , tn, u(.))]⊖
−1

Γ(γ)

∫ t

0
(t− s)γ−1F(s, u(s))ds

First, showing that the operator R is ms-continuous and H(Ru, u0) ≤ σ, it follows that F is
ms-continuous. Suppose that u is cf [(i)− gH]−differentiable, then we have:

φ (Ru(t+ ξ),Ru(t))

= φ(S(t+ ξ) [u0 + h(t1, t2, . . . , tn, u(.))] +
1

Γ(γ)

∫ t+ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds,

S(t) [u0 + h(t1, t2, . . . , tn, u(.))] +
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds)

≤ φ(S(t+ ξ)u0,S(t)u0) + φ(S(t+ ξ)h(t1, t2, . . . , tn, u(.)),S(t)h(t1, t2, . . . , tn, u(.)))

+ φ

(
1

Γ(γ)

∫ t+ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds,
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds

)
≤ φ(S(t+ ξ)u0,S(t)u0) + φ(S(t+ ξ)h(t1, t2, . . . , tn, u(.)),S(t)h(t1, t2, . . . , tn, u(.)))

+ φ

(
1

Γ(γ)

∫ ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds, 0(1,0)

)
+ φ

(
1

Γ(γ)

∫ t+ξ

ξ

(t+ ξ − s)γ−1F(s, u(s))ds,
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds

)
≤ Meωt (φ(S(ξ)u0, u0) + φ(S(ξ)h(t1, t2, . . . , tn, u(.)), h(t1, t2, . . . , tn, u(.))))

+ φ

(
1

Γ(γ)

∫ ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds, 0(1,0)

)
+

1

Γ(γ)

∫ t

0

(t− s)γ−1φ (F(s+ ξ, u(s+ ξ)),F(s, u(s))) ds.

Now if u is cf [(ii)− gH]−differentiable, inside the identical way we have got:

φ (Ru(t+ ξ),Ru(t))

= φ(S(t+ ξ) [u0 + h(t1, t2, . . . , tn, u(.))]⊖
−1

Γ(γ)

∫ t+ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds,

S(t) [u0 + h(t1, t2, . . . , tn, u(.))]⊖
−1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds)

≤ Meωt (φ(S(ξ)u0, u0) + φ(S(ξ)h(t1, t2, . . . , tn, u(.)), h(t1, t2, . . . , tn, u(.))))

+ φ

(
1

Γ(γ)

∫ ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds, 0(1,0)

)
+

1

Γ(γ)

∫ t

0

(t− s)γ−1φ (F(s+ ξ, u(s+ ξ)),F(s, u(s))) ds.
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It is evident that, when ξ 7→ 0:
φ(S(ξ)u0, u0) → 0,

φ(S(ξ)h(t1, t2, . . . , tn, u(.)), h(t1, t2, . . . , tn, u(.))) → 0,

φ

(
1

Γ(γ)

∫ ξ

0

(t+ ξ − s)γ−1F(s, u(s))ds, 0(1,0)

)
→ 0.

Thus, consistently with the dominated convergence theorem, we find:

1

Γ(γ)

∫ t

0

(t− s)γ−1φ (F(s+ ξ, u(s+ ξ)),F(s, u(s))) ds → 0.

Then, R is ms-continuous in I .
As a result, we have that if u is cf [(i)− gH]−differentiable,

φ (Ru(t), u0) = φ

(
S(t) [u0 + h(t1, t2, . . . , tn, u(.))] +

1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds, u0

)
≤ φ(S(t)u0, u0) + φ(S(t)h(t1, t2, . . . , tn, u(.)), 0(1,0))

+ φ

(
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds, 0(1,0))

)
≤ β +Meωtφ(h(t1, t2, . . . , tn, u(.)), 0(1,0))

+
1

Γ(γ)

∫ t

0

(t− s)γ−1φ(F(s, u(s)), 0(1,0))ds

≤ β +MeωTKh +
T γKF

Γ(γ + 1)

Similarly, if u is cf [(ii)− gH]−differentiable, we obtain:

φ (Ru(t), u0) = φ

(
S(t) [u0 + h(t1, t2, . . . , tn, u(.))]⊖

−1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds, u0

)
≤ β +MeωTKh +

T γKF

Γ(γ + 1)

Then,

H (Ru(t), u0) = sup
0≤t≤θ

φ (Ru(t), u0)

≤ β +MeωθKh +
θγKF

Γ(γ + 1)

≤ σ.

Hence, (L2, φ) is a complete metric space.

Let C([0, θ], L2) = {u : [0, θ] −→ L2 | u(t) is ms-continuous}. Let us show that this space
is complete.
Let us show that B is a closed subset of C([0, θ], L2).
Let {um} be a sequence in B such that um → u ∈ C([0, θ], L2. Then,

φ(u(t), u0) ≤ φ(u(t), um(t)) + φ(um(t), u0),
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H(u, u0) = sup
0≤t≤θ

φ(u(t), u0)

≤ H(u, um) +H(um, u0)

≤ σ + β.

So u ∈ B, which implies that B is a closed subset of C([0, θ], L2). As a result, B is a complete
metric space.

Now let us show that the operator R is a contraction. Let u, v ∈ B, we have:

φ (Ru(t),Rv(t)) ≤ φ (S(t)h(t1, t2, . . . , tn, u(.)),S(t)h(t1, t2, . . . , tn, v(.)))

+ φ

(
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, u(s))ds,
1

Γ(γ)

∫ t

0

(t− s)γ−1F(s, v(s))ds

)
≤ MhMeωtφ(u(t), v(t)) +

MFT
γ

Γ(γ + 1)
φ(u(t), v(t)).

We achieve,

H(Ru,Rv) ≤ sup
0≤t≤θ

{MhMeωtφ(ut), v(t)) +
MF

Γ(γ)

∫ t

0

(t− s)γ−1φ(u(s), v(s))ds}

≤
(
MhMeωθ +

MF θ
γ

Γ(γ + 1)

)
H(u, v)

Since,
(
MhMeωθ +

MF θ
γ

Γ(γ + 1)

)
< 1, then R is a contracting operator.

Hence, R admits a fixed point Ru = u ∈ C([0, θ], L2) is:

u(t) =



S(t) [u0 + h(t1, t2, . . . , tn, u(.))]

+
1

Γ(γ)

∫ t

0
(t− s)γ−1F(s, u(s))ds, if u is cf [(i)− gH]-differentiable,

S(t) [u0 + h(t1, t2, . . . , tn, u(.))]

⊖ −1

Γ(γ)

∫ t

0
(t− s)γ−1F(s, u(s))ds, if u is cf [(ii)− gH]-differentiable.

4 Conclusion

In conclusion, this paper provides important insights into the existence and uniqueness of solutions
for intuitionistic fuzzy evolution problems with nonlocal conditions, employing generalized
Caputo derivatives. By integrating concepts from semigroup theory, mean-square calculus
techniques, and contraction mapping principles, our study establishes a robust mathematical
framework that is crucial for effectively addressing these complex problems.
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