As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: 22nd International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets • 18 October 2024 • Warsaw, Poland / online (hybrid mode).
Deadline for submissions: 1 October 2024.

Issue:Intuitionistic fuzzy fractional equation

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/21/4/76-89
Title of paper: Intuitionistic fuzzy fractional equation
Author(s):
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
said.melliani@gmail.com
M'hamed Elomari
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Razika Ettoussi
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 21, 2015, Number 4, pages 76–89
Download:  PDF (228  Kb, File info)
Abstract: In this paper, we discuss the existence and uniqueness of mild solution for intuitionistic fuzzy fractional equation using the concept of semigroup in the intuitionistic fuzzy theory and the theorem of fixed point in the complete metric space.
Keywords: Intuitionistic fuzzy fractional equation, Metric space.
AMS Classification: 03E72, 08A72.
References:
  1. Allahviranloo, T. & M. B. Ahmadi (2010) Fuzzy Laplace transforms, Soft Computing, 14, 235–243.
  2. Bede, B. & S. G. Gal (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151, 581–599.
  3. Diamond, P. & P. E. Kloeden (1994) Metric Spaces of Fuzzy Sets, World Scientific, Singapore.
  4. Gal, C. G. & S. G. Gal (2013) Semigroups of Operators on Spaces of Fuzzy-Number-Valued Functions with Applications to Fuzzy Differential Equations, arXiv:1306.3928v1, 17 June 2013.
  5. Gelfand, I. M. & G. E. Shilvoe (1958) Generalized Functions, Vol. 1, Moscow.
  6. O. Kaleva (2006) A note on fuzzy differential equations. Nonlinear Analysis, 64, 895–900.
  7. Kilbas, A. A., H. M. Srivastava & J. J. Trujillo (2006) Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam.
  8. Klement, E. P., M. L. Puri & D. A. Ralescu (1986) Limit Theorems for Fuzzy Random Variables, Proc. R. Soc. Lond. A, 407, 171-182.
  9. Lakshmikantham, V. & R. N. Mohapatra (2003) Theory of Fuzzy Differential Equations and Applications, Taylor and Francis, London.
  10. Lakshmikantham, V. & A. S. Vatsala (2008) Basic theory of fractional differential equations, Nonlinear Anal., 69, 2677–2682.
  11. Laksmikantham, V. & S. Leela (2009) Nagumo-type uniqueness result for fractional differential equations, Nonlinear Anal., 8, 2886–2889.
  12. Melliani, S., M. Elomari, L. S. Chadli & R. Ettoussi (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  13. Melliani, S., M. Elomari, L. S. Chadli & R. Ettoussi (2015) Intuitionistic fuzzy semigroup, Notes on Intuitionistic Fuzzy Sets, 21(2), 43–50.
  14. Oldham, K. B. & J. Spanier (1974) The Fractional Calculus, Academic Press, New York.
  15. Samko, S. G., A. A. Kilbas & O. I. Marichev (1993) Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Sci. Publishers, London-New York.
  16. Shilove, G. E. (1968) Generalized functions and partial differential equations, Mathematics and Its Applications, Science publishers, Inc..
  17. Shuqin, Z. (2009) Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71, 2087–2093.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.