| Title of paper:
|
On some new geometrically motivated operators over intuitionistic fuzzy sets
|
| Author(s):
|
Peter Vassilev 0000-0002-7361-9272
|
| Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
|
| peter.vassilev@gmail.com
|
| Kristina Zhivkova
|
| Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
|
| kristinadimitrova.zh@gmail.com
|
Vassia Atanassova 0000-0002-3626-9461
|
| Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
|
| vassia.atanassova@gmail.com
|
Lyudmila Todorova 0000-0003-1496-9982
|
| Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
|
| lpt@biomed.bas.bg
|
| Diana Petkova
|
| Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
|
| diana@biomed.bas.bg
|
|
| Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 4, pages 448–457
|
| DOI:
|
https://doi.org/10.7546/nifs.2025.31.4.448-457
|
| Download:
|
PDF (204 Kb, File info)
|
| Abstract:
|
We consider four new geometrically motivated operators acting in the interior of the interpretation triangle used to depict intuitionistic fuzzy sets. The first operators uses the points resulting from the classical "necessity" and "possibility" operators, in combination with the point ⟨0, 0⟩. The definition of the second operator employs the projections of the considered point onto the sides of the triangle, as viewed from the vertices ⟨0, 0⟩, ⟨0, 1⟩, and ⟨1, 0⟩. The remaining two operators combine two of these projections with the result of the modal operators of the internal point. We also consider operators obtained as linear combinations of some of these four operators.
|
| Keywords:
|
Operator, Geometric interpretation, Interior point, Intuitionistic fuzzy set
|
| AMS Classification:
|
03E72, 51Mxx.
|
| References:
|
- Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal Bioautomation, 2016, 20(S1), S1–S6 (in English).
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov K. T. (1989). Four new operators over intuitionistic fuzzy sets. In: Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1989, Preprint IM-MFAIS-4-89. Reprinted: Int J Bioautomation, 2016, 20(S1), S55–S62.
- Atanassov, K. (1989). Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1989, Preprint IM-MFAIS-1-89. Reprinted: International Journal Bioautomation, 2016, 20(S1), S27–S42.
- Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37–45.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag, Berlin.
- Atanassov, K. (2001). A theorem for basis operators over intuitionistic fuzzy sets. Mathware & Soft Computing, 8, 21–30.
- Atanassov, K. (2001). On four intuitionistic fuzzy topological operators. Mathware & Soft Computing, 8, 65–70.
- Atanassov, K. (2002). Remark on a property of the intuitionistic fuzzy interpretation triangle. Notes on Intuitionistic Fuzzy Sets, 8(1), 34–36.
- Atanassov, K. (2004). On the modal operators defined over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 10(1), 7–12.
- Atanassov, K. (2006). The most general form of one type of intuitionistic fuzzy modal operators. Notes on Intuitionistic Fuzzy Sets, 12(2), 36–38.
- Atanassov, K. (2008). The most general form of one type of intuitionistic fuzzy modal operators. Part 2. Notes on Intuitionistic Fuzzy Sets, 14(1), 27–32.
- Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer-Verlag, Berlin.
- Atanassov, K. (2015). A new topological operator over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 21(3), 90–92.
- Atanassov, K. (2015). A property of the intuitionistic fuzzy modal logic operator Xa,b,c,d,e,f. Notes on Intuitionistic Fuzzy Sets, 21(1), 1–5.
- Atanassov, K. (2015). On pseudo-fixed points of the intuitionistic fuzzy quantifiers and operators. Proceedings of 8th European Symposium on Computational Intelligence and Mathematics ESCIM 2016, Sofia, Bulgaria, pp. 66–76.
- Atanassov, K. (2016). Uniformly expanding intuitionistic fuzzy operator. Notes on Intuitionistic Fuzzy Sets, 22(1), 48–52.
- Atanassov, K. T. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
- Atanassov, K. (2018). Intuitionistic fuzzy interpretations of Barcan formulas. Information Sciences, 460/461, 469–475.
- Atanassov, K. T. (2022). New topological operator over intuitionistic fuzzy sets. Journal of Computational and Cognitive Engineering, 1(3), 94–102.
- Atanassov, K. (2023). Intuitionistic fuzzy level operators related to the degree of uncertainty. Notes on Intuitionistic Fuzzy Sets, 29(4), 325–334.
- Atanassov, K., & Ban, A. (2000). On an operator over intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 53(5), 39–42.
- Atanassov, K., Cuvalcioglu, G., Yılmaz, S., & Atanassova, V. (2015). Properties of the intuitionistic fuzzy modal operator ⊗α,β,γ,δ. Notes on Intuitionistic Fuzzy Sets, 21(4), 1–5.
- Atanassov, K., Vassilev, P., & Atanassova, V. (2025). Geometrical interpretations of interval-valued intuitionistic fuzzy sets: reconsiderations and new results. Mathematics, 13(12), Article ID 1967.
- Atanassova, L. (2020). A new operator over intuitionistic fuzzy sets. Notes on Intuitionistic fuzzy sets, 26(1), 23–27.
- Atanassova, L., & Dworniczak, P. (2021). On the operation ∆ over intuitionistic fuzzy sets. Mathematics, 9(13), Article ID 1518.
- Atanassova, V. (2017). New modified level operator Nγ over intuitionistic fuzzy sets. Lecture Notes in Computer Science, 10333, 209–214.
- Atanassova, V., & Doukovska, L. (2017). Compass-and-straightedge constructions in the intuitionistic fuzzy interpretational triangle: Two new intuitionistic fuzzy modal operators. Notes on Intuitionistic Fuzzy Sets, 23(2), 1–7.
- Atanassova, V., Vardeva, I., Sotirova, E., & Doukovska, L. (2016). Traversing and ranking of elements of an intuitionistic fuzzy set in the intuitionistic fuzzy interpretation triangle. Advances in Intelligent Systems and Computing, 401, 161–174.
- Bhattacharya, J. (2024). A brief note on intuitionistic fuzzy operators. Notes on Intuitionistic fuzzy sets, 30(1), 9–17.
- Castillo, O., Hernandez-Aguila, A., & Garcia-Valdez, M. (2017). A method for graphical representation of membership functions for intuitionistic fuzzy inference systems. Notes on Intuitionistic Fuzzy Sets, 23(2), 79–87.
- Castillo, O., Melin, P., Tsvetkov, R., & Atanassov, K. (2015). Short remark on two covering topological operators over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 21(2), 1–5.
- Dantchev, S. (1996). A new geometrical interpretation of some concepts in the intuitionistic fuzzy logics. Notes on Intuitionistic Fuzzy Sets, 2(2), 1–10.
- Dantchev, S. (1995). A new geometrical interpretation of some concepts in the intuitionistic fuzzy logics. Notes on Intuitionistic Fuzzy Sets, 1(2), 116–118.
- Dencheva, K. (2004). Extension of intuitionistic fuzzy modal operators ⊞ and ⊠, Proceedings of 2nd International IEEE Conference on Intelligent Systems. Volume 3. (pp. 21–22). Varna, Bulgaria.
- Georgiev, P., & Atanassov, K. (1996). Geometrical interpretations of the interval-valued intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 2(2), 1–10.
- Georgiev, P., & Atanassov, K. (1998). On the geometrical interpretations of the operations over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 4(1), 28–34.
- Hatzimichailidis, A. G., & Papadopoulos, B. K. (2005). A new geometrical interpretation of some concepts in the intuitionistic fuzzy logic. Notes on Intuitionistic Fuzzy Sets, 11(2), 38–46.
- Georgiev, K., Tasseva, V., & Atanassov, K. (2006). Geometrical interpretations of the π-function values of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 12(1), 56–64.
- Marinov, E., & Atanassov, K. (2015). Integral modifications of the weight-centre operator, defined over intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 68(7), 825–832.
- Riecan, B., Ban, A., & Atanassov, K. (2013). Modifications of the weight-center operator, defined over intuitionistc fuzzy sets. Part 1. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 10, 1–4.
- Riecan, B., Ban, A., & Atanassov, K. (2013). Modifications of the weight-center operator, defined over intuitionistic fuzzy sets. Part 2. Notes on Intuitionistic Fuzzy Sets, 19(2), 1–5.
- Riecan, B., Ban, A., & Atanassov, K. (2013). [[Issue:|Modifications of the weight-center operator, defined over intuitionistc fuzzy sets. Part 3|Modifications of the weight-center operator, defined over intuitionistc fuzzy sets. Part 3]]. Notes on Intuitionistic Fuzzy Sets, 19(3), 20–24.
- Roeva, O., Vassilev, P., & Chountas, P. (2017). Application of topological operators over data from interCriteria analysis. Lecture Notes in Artificaial Intelligence, 10333, 215–225.
- Szmidt, E., Kacprzyk, J., Bujnowski, P., Starczewski, J. T., & Siwocha, A. (2024). Ranking of alternatives described by Atanassov’s intuitionistic fuzzy sets – Reconciling some misunderstandings. Journal of Artificial Intelligence and Soft Computing Research, 14(3), 237–250.
- Tasseva, V., Szmidt, E., & Kacprzyk, J. (2005). On one of the geometrical interpretations of the intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 11(2), 21–27.
- Todorova, L., & Vassilev, P. (2009). A note on a geometric interpretation of the intuitionistic fuzzy set operators Pα,β and Qα,β. Notes on Intuitionistic Fuzzy Sets, 15(4), 25–29.
- Tomova, M. (2014). First weight-center operator. Notes on Intuitionistic Fuzzy Sets, 20(2), 23–26.
- Vassilev, P. (2012). Operators similar to operators defined over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 18(4), 40–47.
- Vassilev, P., & Todorova, L. (2010). Geometric interpretation and the properties of two new operators over the intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 16(4), 12–16.
- Vassilev, P., & Atanassova, V. (2024). On a family of billiards-inspired operators over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 30(1), 92–100.
- Vassilev, P., & Atanassova, V. (2024). On a new expanding modal-like operator on intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 30(4), 368–373.
- Vassilev, P., & Ribagin, S. (2018). A note on intuitionistic fuzzy modal-like operators generated by power mean. Advances in Intelligent Systems and Computing, 643, 470–475.
- Vassilev, P., Stoyanov, T., Todorova, L., Marazov, A., Andonov, V., & Ikonomov, N. (2023). Orderings over intuitionistic fuzzy pairs generated by the power mean and the weighted power mean. Mathematics, 11(13), Article ID 2893.
- Xu, Z. (2007). Intuitionistic preference relations and their application in group decision making. Information Sciences, 177(11), 2363–2379.
- Zhang, X., & Xu, Z. (2012). A new method for ranking intuitionistic fuzzy values and its application in multi-attribute decision making. Fuzzy Optimization and Decision Making, 11(2), 135–146.
|
| Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|