Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at

Call for Papers for the 27th International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 5–6 July 2024, Burgas, Bulgaria • EXTENDED DEADLINE for submissions: 15 APRIL 2024.

Issue:A property of the intuitionistic fuzzy modal logic operator Xa,b,c,d,e,f

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Title of paper: A property of the intuitionistic fuzzy modal logic operator Xa,b,c,d,e,f
Krassimir Atanassov
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
Published in: "Notes on IFS", Volume 21, 2015, Number 1, pages 1—5
Download:  PDF (146  Kb, Info)
Abstract: It is proved that for every two intuitionistic fuzzy pairs [math]\displaystyle{ \langle \mu, \nu \rangle }[/math] and [math]\displaystyle{ \langle \rho, \sigma \rangle }[/math], there are such real numbers [math]\displaystyle{ a, b, c, d, e, f \in [0,1] }[/math] satisfying the conditions for existing of operator Xa,b,c,d,e,f such that [math]\displaystyle{ X_{a, b, c, d, e, f}(\langle \mu, \nu \rangle ) = \langle \rho, \sigma\rangle }[/math]
Keywords: Intuitionistic fuzzy pair, Extended modal operator.
AMS Classification: 03E72.
  1. Atanassov, K. Two variants of intuitionistic fuzzy modal logic, Preprint IM-MFAIS-3-89, 1989, Sofia
  2. Atanassov, K. A universal operator over intuitionistic fuzzy sets, Comptes rendus de l’Academie bulgare des Sciences, 46(1), 1993, 13–15.
  3. Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg, 1999.
  4. Atanassov, K. On Intuitionistic Fuzzy Sets Theory. Springer, Berlin, 2012.
  5. A short remark on intuitionistic fuzzy operators Xa,b,c,d,e,f and xa,b,c,d,e,f, Notes on Intuitionistic Fuzzy Sets, 19(1), 54–56.
  6. Atanassov, K., Szmidt, E, & Kacprzyk, J. On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 2013, 1–13.
  7. Feys, R. Modal Logics, Gauthier, 1965,Paris.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.