Title of paper:
|
A property of the intuitionistic fuzzy modal logic operator Xa,b,c,d,e,f
|
Author(s):
|
Krassimir Atanassov
|
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
|
krat@bas.bg
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 21, 2015, Number 1, pages 1—5
|
Download:
|
PDF (146 Kb, File info)
|
Abstract:
|
It is proved that for every two intuitionistic fuzzy pairs [math]\displaystyle{ \langle \mu, \nu \rangle }[/math] and [math]\displaystyle{ \langle \rho, \sigma \rangle }[/math], there are such real numbers [math]\displaystyle{ a, b, c, d, e, f \in [0,1] }[/math] satisfying the conditions for existing of operator Xa,b,c,d,e,f such that [math]\displaystyle{ X_{a, b, c, d, e, f}(\langle \mu, \nu \rangle ) = \langle \rho, \sigma\rangle }[/math]
|
Keywords:
|
Intuitionistic fuzzy pair, Extended modal operator.
|
AMS Classification:
|
03E72.
|
References:
|
- Atanassov, K. Two variants of intuitionistic fuzzy modal logic, Preprint IM-MFAIS-3-89, 1989, Sofia
- Atanassov, K. A universal operator over intuitionistic fuzzy sets, Comptes rendus de l’Academie bulgare des Sciences, 46(1), 1993, 13–15.
- Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg, 1999.
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory. Springer, Berlin, 2012.
- Atanassov, K. A short remark on intuitionistic fuzzy operators Xa,b,c,d,e,f and xa,b,c,d,e,f, Notes on Intuitionistic Fuzzy Sets, 19(1), 54–56.
- Atanassov, K., Szmidt, E, & Kacprzyk, J. On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 2013, 1–13.
- Feys, R. Modal Logics, Gauthier, 1965,Paris.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|