A property of the intuitionistic fuzzy modal logic operator $X_{a, b, c, d, e, f}$

Krassimir Atanassov
Dept. of Bioinformatics and Mathematical Modelling IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., B1. 105, Sofia-1113, Bulgaria
e-mail: krat@bas.bg

Abstract

It is proved that for every two intuitionistic fuzzy pairs $\langle\mu, \nu$,$\rangle and \langle\rho, \sigma\rangle$, there are real numbers $a, b, c, d, e, f \in[0,1]$ satisfying the conditions for existing of operator $X_{a, b, c, d, e, f}$, such that $$
X_{a, b, c, d, e, f}(\langle\mu, \nu,\rangle)=\langle\rho, \sigma\rangle .
$$

Keywords: Intuitionistic fuzzy pair, Extended modal operator.
AMS Classification: 03E72.

1 Introduction

Operator $X_{a, b, c, d, e, f}$ is the most general extension of the modal operators, defined over Intuitionistic Fuzzy Sets (IFSs, see [3, 4]). It was introduced in [2] in 1993, but in its definition there was an omission, that was discussed firstly in [5]. Here, we use this corrected form of operator $X_{a, b, c, d, e, f}$, but we will use it for the case of Intuitionistic Fuzzy Modal Logic (IFML, see [4]).

First, following [6], we mention that the Intuitionistic Fuzzy Pair (IFP) is an object with the form $\langle a, b\rangle$, where $a, b \in[0,1]$ and $a+b \leq 1$, that is used as an evaluation of some object or process and whose conponents (a and b) are interpreted as degrees of membership and nonmembership, or degrees of validity and non-validity, or degree of correctness and non-correctness, etc.

Let everywhere $\pi=1-\mu-\nu$.
In [1, 3, 4], the clasical logic modal operators (see, e.g., [7]) are extended to the following forms.

Let $\alpha, \beta \in[0,1]$ and let:

$$
\begin{aligned}
& F_{\alpha, \beta}(x)=\left\langle\mu+\alpha \cdot \pi, \nu_{A}+\beta \cdot \pi\right\rangle, \text { where } \alpha+\beta \leq 1 \\
& G_{\alpha, \beta}(x)=\langle\alpha \mu, \beta \nu\rangle, \\
& H_{\alpha, \beta}(A)=\left\langle\alpha \mu, \nu_{A}+\beta \pi\right\rangle, \\
& H_{\alpha, \beta}^{*}(x)=\langle\alpha \mu, \nu+\beta(1-\alpha \mu-\nu)\rangle, \\
& J_{\alpha, \beta}(x)=\langle\mu+\alpha \pi, \beta \nu\rangle, \\
& J_{\alpha, \beta}^{*}(x)=\langle\mu+\alpha(1-\mu-\beta \nu), \beta \nu\rangle .
\end{aligned}
$$

The operators from modal type, defined in IFS theory or inn IFML, were extended in some directions as described in [3, 4]. The most general of them is the operator with the form

$$
X_{a, b, c, d, e, f}(x)=\langle a . \mu+b .(1-\mu-c . \nu), d . \nu+e .(1-f . \mu-\nu)\rangle,
$$

where $a, b, c, d, e, f \in[0,1]$ and

$$
\begin{gather*}
a+e-e . f \leq 1, \tag{1}\\
b+d-b . c \leq 1, \tag{2}\\
b+e \leq 1 \tag{3}
\end{gather*}
$$

The third condition was added to the definition in [5], because without it for the IFS

$$
U^{*}=\{\langle x, 0,0\rangle \mid x \in E\}
$$

we obtain

$$
X_{0,1,0,0,1,0}\left(U^{*}\right)=\{\langle x, 1,1\rangle \mid x \in E\},
$$

that is impossible. The same is valid in IFML for $1^{*}=\langle 1,0\rangle$: we obtain

$$
X_{0,1,0,0,1,0}\left(1^{*}\right)=\langle 1,1\rangle
$$

On the other hand, as it is mentioned in [5], this condition is valid in all cases when operator $X_{a, b, c, d, e, f}$ represents some of the above described modal type of operators and, probably, this is the reason why the author had not seen it from the beginning.

2 Main results

Here, we prove the following
Theorem. For every two IFPs $\langle\mu, \nu$,$\rangle and \langle\rho, \sigma\rangle$, there are real numbers $a, b, c, d, e, f \in[0,1]$ satisfying (1)-(3), such that

$$
X_{a, b, c, d, e, f}(\langle\mu, \nu,\rangle)=\langle\rho, \sigma\rangle .
$$

Proof. Let $\mu, \nu, \rho, \sigma \in[0,1]$, so that $\mu+\nu \leq 1, \rho+\sigma \leq 1$. We search $a, b, c, d, e, f \in[0,1]$ that satisfy (1)-(3) and for which

$$
\begin{equation*}
\langle\rho, \sigma\rangle=X_{a, b, c, d, e, f}(\langle\mu, \nu,\rangle)=\langle a \cdot \mu+b .(1-\mu-c . \nu), d . \nu+e .(1-f . \mu-\nu)\rangle, \tag{4}
\end{equation*}
$$

i.e.

$$
\begin{align*}
& \rho=a . \mu+b .(1-\mu-c . \nu), \tag{5}\\
& \sigma=d . \nu+e .(1-f . \mu-\nu) . \tag{6}
\end{align*}
$$

We discuss nine cases.
Case 1. $\pi=\mu=0$. Then $\nu=1$. We put

$$
a=c=e=f=0, b=\rho, d=\sigma .
$$

Then conditions (1)-(3) are valid and

$$
X_{0, \rho, 0, \sigma, 0,0}(\langle\mu, \nu,\rangle)=\langle 0+\rho .(1-0-0 \times 1), \sigma \times 1+0 .(1-0 \times \mu-1)\rangle=\langle\rho, \sigma\rangle .
$$

Case 2. $\pi=\nu=0$. Then $\mu=1$. We put

$$
a=\rho, b=c=d=f=0, e=\sigma .
$$

Then conditions (1)-(3) are valid and

$$
X_{\rho, 0,0,0, \sigma, 0}(\langle\mu, \nu,\rangle)=\langle\rho+0 \times(1-0 \times 1-0), 0+\sigma .(1-0 \times 1-1)\rangle=\langle\rho, \sigma\rangle .
$$

When $\pi=0$ and $\mu, \nu>0$, there are three (sub)cases. It is important to mention that now $\mu, \nu<1$.
Case 3. $\rho>\mu$. Then from $\pi=0$ it follows that $\mu=1-\nu$ and hence $\sigma \leq 1-\rho<1-\mu=\nu$. So, we put

$$
a=1, b=\frac{\rho-\mu}{1-\mu}, c=e=f=0, d=\frac{\sigma}{\nu} .
$$

Then conditions (1)-(3) are valid and

$$
X_{1, \frac{\rho-\mu}{1-\mu}, 0, \frac{\sigma}{\nu}, 0,0}(\langle\mu, \nu,\rangle)=\left\langle\mu+\frac{\rho-\mu}{1-\mu} \cdot(1-\mu), \frac{\sigma}{\nu} \cdot \nu\right\rangle=\langle\rho, \sigma\rangle .
$$

Case 4. $\sigma>\nu$. Then from $\pi=0$ again it follows that $\mu=1-\nu$ and hence $\rho \leq 1-\sigma<1-\nu=\mu$. So, we put

$$
a=\frac{\rho}{\mu}, b=c=f=0, d=1, e=\frac{\sigma-\nu}{1-\nu} .
$$

Then conditions (1)-(3) are valid and

$$
X_{\frac{\rho}{\mu}, 0,0,1, \frac{\sigma-\nu}{1-\nu}, 0,0}(\langle\mu, \nu,\rangle)=\left\langle\frac{\rho}{\mu} \cdot \mu+0, \nu+\frac{\sigma-\nu}{1-\nu} \cdot(1-\nu)\right\rangle=\langle\rho, \sigma\rangle .
$$

Case 5. $\rho \leq \mu$ and $\sigma \leq \nu$. Then we put

$$
a=\frac{\rho}{\mu}, b=c=e=f=0, d=\frac{\sigma}{\nu} .
$$

Then conditions (1)-(3) are valid and

$$
X_{\frac{\rho}{\mu}, 0,0, \frac{\sigma}{\nu}, 0,0}(\langle\mu, \nu,\rangle)=\left\langle\frac{\rho}{\mu} \cdot \mu+0, \frac{\sigma}{\nu} \cdot \nu+0\right\rangle=\langle\rho, \sigma\rangle .
$$

When $\pi>0$, then $\mu, \nu<1$.
Case 6. $\rho>\mu$ and $\sigma>\nu$. Then we put

$$
a=c=d=f=1, b=\frac{\rho-\mu}{\pi}, e=\frac{\sigma-\nu}{\pi} .
$$

Then conditions (1)-(3) are valid, because:

$$
\begin{gathered}
a+e-e . f=1+e-e=1 \leq 1, \\
b+d-b . c=d=\frac{\sigma-\nu}{\pi} \leq 1, \\
b+e=\frac{\rho-\mu}{\pi}+\frac{\sigma-\nu}{\pi}=\frac{\rho+\sigma-\mu-\nu}{\pi} \leq 1 .
\end{gathered}
$$

All other similar checks are doing by similar way. Now,

$$
X_{1, \frac{\rho-\mu}{\pi}, 1,1, \frac{\sigma-\nu}{\pi}, 1}(\langle\mu, \nu,\rangle)=\left\langle\mu+\frac{\rho-\mu}{\pi} \cdot \pi, \nu+\frac{\sigma-\nu}{\pi} \cdot \pi\right\rangle=\langle\rho, \sigma\rangle .
$$

Case 7. $\rho>\mu$ and $\sigma \leq \nu$. Then, as in Case 3, we put

$$
a=1, b=\frac{\rho-\mu}{1-\mu}, c=e=f=0, d=\frac{\sigma}{\nu} .
$$

Then conditions (1)-(3) are valid and

$$
X_{1, \frac{\rho-\mu}{1-\mu}, 0, \frac{,}{\nu}, 0,0}(\langle\mu, \nu,\rangle)=\left\langle\mu+\frac{\rho-\mu}{1-\mu} \cdot(1-\mu), \frac{\sigma}{\nu} \cdot \nu\right\rangle=\langle\rho, \sigma\rangle .
$$

Case 8. $\rho \leq \mu$ and $\sigma>\nu$. Then, as in Case 4, we put

$$
a=\frac{\rho}{\mu}, b=c=f=0, d=1, e=\frac{\sigma-\nu}{1-\nu} .
$$

Then conditions (1)-(3) are valid and

$$
X_{\frac{\rho}{\mu}, 0,0,1, \frac{\sigma-\nu}{1-\nu}, 0,0}(\langle\mu, \nu,\rangle)=\left\langle\frac{\rho}{\mu} \cdot \mu+0, \nu+\frac{\sigma-\nu}{1-\nu} \cdot(1-\nu)\right\rangle=\langle\rho, \sigma\rangle .
$$

Case 9. $\rho \leq \mu$ and $\sigma \leq \nu$. Then, as in Case 5, we put

$$
a=\frac{\rho}{\mu}, b=c=e=f=0, d=\frac{\sigma}{\nu} .
$$

Then conditions (1)-(3) are valid and

$$
X_{\frac{\rho}{\mu}, 0,0, \frac{\sigma}{\nu}, 0,0}(\langle\mu, \nu,\rangle)=\left\langle\frac{\rho}{\mu} \cdot \mu+0, \frac{\sigma}{\nu} \cdot \nu+0\right\rangle=\langle\rho, \sigma\rangle .
$$

This completes the proof.

3 Conclusion

We finish with the following Open problems:

1. Which other values of the arguments of operator X are possible values, leading to solution of the above formulated problem?
2. To represent operator X as composition of some of the operators F, G, H, H^{*}, J, J^{*}.

Acknowledgements

The author is thankful for the support provided by the Bulgarian National Science Fund under Grant Ref. No. DFNI-I-02-5 "InterCriteria Analysis: A New Approach to Decision Making".

References

[1] Atanassov, K. (1989) Two variants of intuitionistic fuzzy modal logic, Preprint IM-MFAIS-3-89, Sofia.
[2] Atanassov, K. (1993) A universal operator over intuitionistic fuzzy sets, Comptes rendus de l'Academie bulgare des Sciences, 46(1), 13-15.
[3] Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
[4] Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
[5] Atanassov, K. (2013) A short remark on intuitionistic fuzzy operators $X_{a, b, c, d, e, f}$ and $x_{a, b, c, d, e, f}$, Notes on Intuitionistic Fuzzy Sets, 19(1), 54-56.
[6] Atanassov, K., Szmidt, E, \& Kacprzyk, J. (2013) On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19, 2013(3), 1-13.
[7] Feys, R. (1965) Modal Logics, Gauthier, Paris.

