Title of paper:
|
On intuitionistic fuzzy version of Zadeh’s extension principle
|
Author(s):
|
Selami Bayeğ
|
Industrial Engineering Department, University of Turkish Aeronautical Association, Ankara, Turkey
|
sbayeg@thk.edu.tr
|
Raziye Mert
|
Department of Software Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
|
rmert@atu.edu.tr
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 3, pages 9–17
|
DOI:
|
https://doi.org/10.7546/nifs.2021.27.3.9-17
|
Download:
|
PDF (177 Kb, File info)
|
Abstract:
|
In this paper, by using [math]\displaystyle{ \alpha }[/math]- and [math]\displaystyle{ \beta }[/math]-cuts approach and the intuitionistic fuzzy Zadeh’s extension principle, we have proved a result which reveals that the [math]\displaystyle{ \alpha }[/math]- and [math]\displaystyle{ \beta }[/math]-cuts of an intuitionistic fuzzy number obtained by the intuitionistic fuzzy Zadeh’s extension principle coincide with the images of the [math]\displaystyle{ \alpha }[/math]- and [math]\displaystyle{ \beta }[/math]-cuts by the crisp function. Then we have given a corollary about monotonicity of the extension principle. Finally, we have extended these results to [math]\displaystyle{ IF_N(\mathbb{R}) \times IF_N(\mathbb{R}) }[/math].
|
Keywords:
|
Intuitionistic fuzzy sets, Intuitionistic fuzzy Zadeh’s extension principle, Zadeh’s extension principle.
|
AMS Classification:
|
94D05, 26E50.
|
References:
|
- Akın, Ö., & Bayeğ, S. (2017). Intuitionistic fuzzy initial value problems: An application. Hacettepe Journal of Mathematics and Statistics, 48(6), 1682–1694.
- Akın, Ö., & Bayeğ, S. (2019). Some results on the fundamental concepts of fuzzy set theory in intuitionistic fuzzy environment by using [math]\displaystyle{ \alpha }[/math]- and [math]\displaystyle{ \beta }[/math]-cuts. Filomat, 33(10), 3123–3148.
- Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassova, L. (2006). On intuitionistic fuzzy versions of L. Zadeh’s extension principle. Notes on Intuitionistic Fuzzy Sets, 13(3), 33–36.
- Dong, W. M., & Wong, F. S. (1987). Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems, 21(2), 183–199.
- De Barros, L. C., Bassanezi, R. C., & Tonelli, P.A. (1997). On the continuity of the Zadeh’s extension. 7th IFSA World Congress Proceedings, Prague, Czech Republic, 3–8.
- Hanss, M. (2002). The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets and Systems, 130(3), 277–289.
- Kerre, E. E. (2011). A tribute to Zadeh’s extension principle. Scientia Iranica, 18(3), 593–595.
- Marinov, E. (2014). On extension principle for intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 20(3), 34–41.
- Nguyen, H. T. (1978). A note on the extension principle for fuzzy sets. Journal of Mathematical Analysis and Applications, 64(2), 369–380.
- Wood, K. L., Otto, K. N., & Antonsson, E. K. (1992). Engineering design calculations with fuzzy parameters. Fuzzy Sets and Systems, 52(1), 1–20.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|