As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On extension principle for intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/20/3/34-41
Title of paper: On extension principle for intuitionistic fuzzy sets
Author(s):
Evgeniy Marinov
Dept. of Bioinformatics and Mathematical Modelling, IBPhBME, Bulgarian Academy of Sciences, 105 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
evgeniy.marinov@biomed.bas.bg
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 20, 2014, Number 3, pages 34-41
Download:  PDF (193  Kb, File info)
Abstract: In the following paper, a new representation of Intuitionistic fuzzy sets (IFSs) has been introduced, through an integral symbol, which meaning is explained in detail. We remark that this form represents an IFS in a very suitable way for writing down some of the operations applying the extension principle for IFSs, and possesses some properties of the complex numbers and integrals.
Keywords: Extension principle, Intuitionistic fuzzy sets, Integral representation.
AMS Classification: 03E72.
References:
  1. Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications, Springer–Verlag, Heidelberg, 1999.
  2. Atanassov, K. On Intuitionistic Fuzzy Sets Theory. Springer–Verlag, Berlin, 2012.
  3. Atanassov, K., P. Vassilev, R. Tcvetkov. Intuitionistic Fuzzy Sets, Measures and Integrals. “Prof. M. Drinov” Academic Publishing House, Sofia, 2013.
  4. Atanassova, L. On intuitionistic fuzzy versions of L. Zadeh's extension principle, Notes on Intuitionistic Fuzzy Sets, Vol. 13, 2007, No. 3, 33–36.
  5. Birkhoff, G. Lattice Theory, American Mathematical Society, Providence, Rhode Island, 1967.
  6. Coker, D. An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, Vol. 88, 1997, No. 1, 81–89.
  7. Szmidt, E., J. Kacprzyk. Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 114, 2000, No. 3, 505–518.
  8. Zadeh L. A. Fuzzy sets. Information and Control, Vol. 8, 1965, 338–353.
  9. Zadeh L. A. The Concept of a Linguistic Variable and its Application to Approximate Reasoning–I. Information Sciences, Vol. 8, 1975, 199–249.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.