As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:On intuitionistic fuzzy semiprime submodules

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/2/161-171
Title of paper: On intuitionistic fuzzy semiprime submodules
Author(s):
P. K. Sharma
Post-Graduate Department of Mathematics, D.A.V.College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 2, pages 161–171
DOI: https://doi.org/10.7546/nifs.2022.28.2.161-171
Download:  PDF (189  Kb, File info)
Abstract: The purpose of this paper is to extend the notion of ordinary semiprime submodules to intuitionistic fuzzy semiprime submodules. Also we introduce and study new properties of intuitionistic fuzzy semiprime submodules. Many related results are obtained.
Keywords: Intuitionistic fuzzy module, Intuitionistic fuzzy semiprime module, Intuitionistic fuzzy semiprime ideal.
AMS Classification: 03F55, 03G25, 13C05, 13C13, 13A15.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg.
  4. Bakhadach, I., Melliani, S., Oukessou, M., & Chadli, L. S. (2016). Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring. Notes on Intuitionistic Fuzzy Sets, 22(2), 59–63.
  5. Basnet, D. K. (2011). Topics in Intuitionistic Fuzzy Algebra. Lambert Academic Publishing.
  6. Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
  7. Biswas, R. (1997). On fuzzy sets and intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(1), 3–11.
  8. Davvaz, B., Dudek, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hv-submodules. Information Sciences, 176(3), 285–300.
  9. Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic fuzzy ideals of a ring. Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
  10. Isaac, P., & John, P. P. (2011). On intuitionistic fuzzy submodules of a modules. International Journal of Mathematical Sciences and Applications, 1(3), 1447–1454.
  11. Rahman, S., & Saikia, H. K. (2013). Some Aspects of Atanassov’s Intuitionistic Fuzzy Submodules. International Journal of Pure and Applied Mathematics, 77(3), 369–383.
  12. Sharma, P. K. (2011). (α; β)-cut of intuitionistic fuzzy modules. International Journal of Mathematical Sciences and Applications, 1(3), 1489–1492.
  13. Sharma, P. K. (2022). On intuitionistic fuzzy multiplication modules. Annals of Fuzzy Mathematics and Informatics, 23(3), 295–309.
  14. Sharma, P. K., & Kanchan. (2020). On intuitionistic L-fuzzy primary and P-primary submodules. Malaya Journal of Matematik, 8(2), 1417–1426.
  15. Sharma, P. K., & Kanchan. (2021). The topological structure on the spectrum of intuitionistic L-fuzzy prime submodules. Annals of Fuzzy Mathematics and Informatics, 21(2), 195–215.
  16. Sharma, P. K., Kanchan, & Pathania, D. S. (2020). On decomposition of intuitionistic fuzzy prime submodules. Notes on Intuitionistic Fuzzy Sets, 26(2), 25–32.
  17. Sharma, P. K., & Kaur, G. (2017). Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module. International Journal of Computer Science and Information Technology, 9(4), 1–15.
  18. Sharma, P. K., & Kaur, G. (2018). On intuitionistic fuzzy prime submodules. Notes on Intuitionistic Fuzzy Sets, 24(4), 97–112.
  19. Sharma, P. K., Lata, H., & Bharadwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of a Γ-ring. Creative Mathematics and Informatics. 32(1), (to appear).
  20. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control. 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.