Title of paper:
|
On decomposition of intuitionistic fuzzy prime submodules
|
Author(s):
|
P. K. Sharma
|
Post Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
Kanchan
|
Research Scholar, IKG PT University, Jalandhar, Punjab, India
|
kanchan4usoh@gmail.com
|
D. S. Pathania
|
Department of Applied Sciences, GNDEC, Ludhiana, Punjab, India
|
despathania@yahoo.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 26 (2020), Number 2, pages 25–32
|
DOI:
|
https://doi.org/10.7546/nifs.2020.26.2.25-32
|
Download:
|
PDF (167 Kb, File info)
|
Abstract:
|
This article is in continuation of the first author’s previous paper on intuitionistic fuzzy prime submodules, [13]. In this paper, we explore the decomposition of intuitionistic fuzzy submodule as the intersection of finite many intuitionistic fuzzy prime submodules. Many other forms of decomposition like irredundant and normal decomposition are also investigated.
|
Keywords:
|
Intuitionistic fuzzy prime ideal (submodule), Residual quotient, Intuitionistic fuzzy prime decomposition, Irredundant and normal decomposition.
|
AMS Classification:
|
03F55, 16D10, 46J20.
|
References:
|
- Akray, I., & Hussein, H. S. (2017). I-Prime Submodules, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 33, 165–173.
- Amini, A., Amini, B. & Sharif, H. (2006). Prime and primary submodule of certain modules, Czechoslovak Mathematical Journal, 56 (131), 641–648.
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
- Bakhadach, I., Melliani, S. Oukessou, M., & Chadli, L. S. (2016). Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring, Notes on Intuitionistic Fuzzy Sets, 22 (2), 59–63.
- Basnet, D. K. (2011). Topics in Intuitionistic Fuzzy Algebra, Lambert Academic Publishing, ISBN: 978-3-8443-9147-3.
- Meena, K., & Thomas, K. V. (2011). Intuitionistic L-Fuzzy Subrings, International Mathematical Forum, 6 (52), 2561–2572.
- Lu, C. P. (1984). Prime Submodules of Modules, Comment. Math. Univ. Sancti Paulli, 33 (1), 61–69.
- McCasland, R. L., & Moore, M. E. (1992). Prime Submodules, Comm. Algebra, 20 (6), 1803–1817.
- Tiras¸, Y. & Harmanci, A. (2000). On Prime Submodules and Primary Decomposition, Czech. Math. J., 50 (125), 83–90.
- Sharma, P. K. (2016). Reducibility and Complete Reducibility of intuitionistic fuzzy G-modules, Annals of Fuzzy Mathematics and Informatics, 11 (6), 885–898.
- Sharma P. K., & Kaur, G. (2017). Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module, International Journal of Computer Sciences and Information Techonology, 9 (4), 1–15.
- Sharma P. K., & Kaur, G. (2017). Intuitionistic fuzzy prime spectrum of a ring, CiiT International Journal of Fuzzy Systems, 9 (8), 167–175.
- Sharma P. K., & Kaur, G. (2018). On intuitionistic fuzzy prime submodules, Notes on Intuitionistic Fuzzy Sets, 24 (4), 97–112.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|