As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: 22nd International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets • 18 October 2024 • Warsaw, Poland / online (hybrid mode).
Deadline for submissions: 1 October 2024.

Issue:On intuitionistic fuzzy modal topological structures with modal operator of second type

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/4/457-463
Title of paper: On intuitionistic fuzzy modal topological structures with modal operator of second type
Author(s):
Krassimir Atanassov
Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
krat@bas.bg
Presented at: International Workshop on Intuitionistic Fuzzy Sets, founded by Prof. Beloslav Riečan, 2 December 2022, Banská Bystrica, Slovakia
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 457–463
DOI: https://doi.org/10.7546/nifs.2022.28.4.457-463
Download:  PDF (192  Kb, File info)
Abstract: Two new Intuitionistic Fuzzy Modal Feeble Topological Structures (IFMFTSs) are introduced of fifth and sixth types. Examples for these structures are given.
Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy modal topological structure.
AMS Classification: 03E72.
References:
  1. Angelova, N., & Stoenchev, M. (2105/2016). Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
  2. Angelova, N., & Stoenchev, M. (2017). Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
  3. Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
  4. Atanassov, K. (2008). Intuitionistic fuzzy implication →ε,η and intuitionistic fuzzy negation ¬ε,η. Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, 1, 1–10.
  5. Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
  6. Atanassov, K. (2022). Intuitionistic Fuzzy Modal Topological Structure. Mathematics 10, 3313.
  7. Atanassov, K. (2022). On the intuitionistic fuzzy modal feeble topological structures. Notes on Intuitionistic Fuzzy Sets, 28(3), 211–222.
  8. Atanassov, K. On four intuitionistic fuzzy feeble topological structures. Proceedings of the 11th Int. IEEE Conf. “Intelligent Systems”, Warsaw, 13–15 Oct. 2022 (in press).
  9. Atanassov, K. On intuitionistic fuzzy extended modal topological structures. Proceedings of the 20th Int. Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, Warsaw, 15 Oct. 2022 (in press).
  10. Blackburn, P., van Bentham, J., & Wolter, F. (2006). Modal Logic, North Holland, Amsterdam.
  11. Bourbaki, N. (1960). Éléments de Mathématique, Livre III: Topologie Générale, Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes. Herman, Paris (Third Edition, in French).
  12. Feys, R. (1965). Modal Logics, Gauthier, Paris.
  13. Kuratowski, K. (1966). Topology: Volume 1, Academic Press, New York.
  14. Mints, G. (1992). A Short Introduction to Modal Logic. University of Chicago Press, Chicago.
  15. Munkres, J. (2000). Topology, Prentice Hall Inc., New Jersey.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.