As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:R1 and level R1 separation axioms on intuitionistic fuzzy pairwise topological spaces using intuitionistic fuzzy open sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/31/3/290-304)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/3/290-304
Title of paper: R1 and level R1 separation axioms on intuitionistic fuzzy pairwise topological spaces using intuitionistic fuzzy open sets
Author(s):
Saikh Shahjahan Miah     0000-0002-9182-5299
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
skhshahjahan@gmail.com
Md. Hridoy Hasan     0009-0007-5085-9357
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
hridoyhasan89@gmail.com
Ruhul Amin     0009-0003-6664-5311
Department of Mathematics, Begum Rokeya University, Rangpur-5404, Bangladesh
ruhulamin@brur.ac.bd
Nigar Sultana     0000-0003-0848-8015
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
Department of Mathematics, North Carolina State University, Raleigh, NC, USA
nigarsultana262@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 3, pages 290–304
DOI: https://doi.org/10.7546/nifs.2025.31.3.290-304
Download:  PDF (256  Kb, File info)
Abstract: This study investigates the notions of intuitionistic fuzzy (IF) R1 pairwise topological space and α-R1 type separation axioms on IF pairwise topological spaces in the sense of intuitionistic fuzzy open sets. We define four notions of IF R1 pairwise topological space and three notions of α-R1 IF pairwise topological spaces and show the relationship among the notions separately with appropriate examples. In order to show the correctness of the proposed definitions, we show the good extension property for both types of the notions followed by examples as well. Finally, we show that our notions satisfy the hereditary and preserve the homeomorphism mapping properties.
Keywords: Intuitionistic fuzzy set (IFS), Intuitionistic fuzzy pairwise topological space, Separation axiom, R1 Intuitionistic fuzzy pairwise topological space, Good extension.
AMS Classification: 03E72, 54A40, 94D05.
References:
  1. Ahmed, E., Hossain, M. S., & Ali, D. M. (2015). On intuitionistic fuzzy R1 spaces. Journal of Mathematical and Computational Science, 5(5), 681–693.
  2. Al-Qubati, A. A. Q. (2015). On b-separation axioms in intuitionistic fuzzy topological spaces. International Journal of Mathematics Trends and Technology, 21(2), 83–93.
  3. Amin, R., Hossain, M. S., & Miah, S. S. (2020). Fuzzy pairwise regular bitopological spaces in quasi-coincidence sense. Journal of Bangladesh Academy of Sciences, 44(2), 139–143.
  4. Amin, R., Islam, R., Shaha, S. K., & Miah, S. S. (2022). Some properties of T0 fuzzy soft topological spaces in quasi-coincidence sense. Journal of Mechanics of Continua and Mathematical Sciences, 17(4), 8–20.
  5. Atanassov, K. T. (1983). Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal Bioautomation, 2016, 20(S1), S1–S6.
  6. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  7. Atanassov, K. T. (1988). Review and new results on intuitionistic fuzzy sets. Mathematical Foundations of Artificial Intelligence Seminar, Sofia, Preprint IM-MFAIS-1-88. Reprinted: International Journal Bioautomation, 2016, 20(S1), S7–S16.
  8. Atanassov, K. T. (1992). Remarks on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 51(1), 117-118.
  9. Atanassov, K. T., & Stoeva, S. (1983). Intuitionistic fuzzy sets. In: Polish Symposium on Interval & Fuzzy Mathematics, Poznan, 1983, 23–26.
  10. Bayhan, S., & Çoker, D. (1996). On fuzzy separation axioms in intuitionistic fuzzy topological spaces. BUSEFAL, 67, 77–87.
  11. Bayhan, S., & Çoker, D. (2005). Pairwise separation axioms in intuitionistic topological spaces. Hacettepe Journal of Mathematics and Statistics, 34S, 101–114.
  12. Buhaescu, T. (1989). Some observations on intuitionistic fuzzy relations. Proceedings of the Seminar of functional Equations, Approximation and Convexity, Cluj-Napoca, 111–118.
  13. Chang, C. L. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182–190.
  14. Çoker, D. (1996). An introduction to fuzzy subspace in intuitionistic fuzzy topological spaces. Journal of Fuzzy Mathematics, 4, 749–764.
  15. Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems, 88(1), 81–89.
  16. Çoker, D., & Bayhan, S. (2001). On separation axioms in intuitionistic topological spaces. International Journal of Mathematics and Mathematical Sciences, 27(10), 621–630.
  17. Islam, R., Hossain, M. S., & Hoque, M. F. (2020). A study on intuitionistic L-fuzzy T1 spaces. Notes on Intuitionistic Fuzzy Sets, 26(3), 33–42.
  18. Lee, S. J., & Lee, E. P. (2000). The category of intuitionistic fuzzy topological spaces. Bulletin of the Korean Mathematical Society, 37(1), 63–76.
  19. Lupianez, F. G. (2004). Separation in intuitionistic fuzzy topological spaces. International Journal of Pure and Applied Mathematics, 17(1), 29–34.
  20. Mahbub, M. A., Hossain, M. S., & Hossain, M. A. (2021). Connectedness concept in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 27(1), 72–82.
  21. Miah, S. S., Amin, R., Islam, R., Shahjalal, M., & Karim, R. (2022). New concepts on R1 fuzzy soft bitopological space in quasi-coincidence sense. Journal of Mechanics of Continua and Mathematical Sciences, 17(4), 51–59.
  22. Miah, S. S., & Jumur, B. N. (2024). Intuitionistic fuzzy R0 bitopological space: An in-depth exploration. GANIT: Journal of Bangladesh Mathematical Society, 44(1), 23–28.
  23. Miah, S. S., & Kabir, H. (2024). Study on intuitionistic fuzzy Hausdorff (T2) bitopological spaces: Theoretical insights. Journal of Bangladesh Academy of Sciences, 48(1), 51–59.
  24. Miah, S. S., Lily, F. T., Amin, M. R., Karim, R., & Akbar, M. A. (2024). Separation axioms on fuzzy neutrosophic bitopological spaces using fuzzy neutrosophic open sets. Journal of Umm Al-Qura University for Applied Sciences. Available online at: https://doi.org/10.1007/s43994-024-00173-7.
  25. Miah, S. S., Miah, J., Amin, R., & Sultana, N. (2024). Intuitionistic fuzzy normal bi-topological space-approach of intuitionistic fuzzy open sets. Notes on Intuitionistic Fuzzy Sets, 30(3), 230–241.
  26. Miah, S. S., Ronjon, R., & Sultana, N. (2024). An in-depth exploration of intuitionistic fuzzy T0 in the context of bitopology. Notes on Intuitionistic Fuzzy Sets, 30(1), 66–76.
  27. Prova, T. T., & Hossain, M. S. (2020). Intuitionistic fuzzy based regular and normal spaces. Notes on Intuitionistic Fuzzy Sets, 26(4), 53–63.
  28. Saadati, R., & Park, J. H. (2006). On the intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals, 27(2), 331–344.
  29. Singh, A. K., & Srivastava, R. (2012). Separation axioms in intuitionistic fuzzy topological spaces. Advances in Fuzzy Systems, 2012, Article ID 604396.
  30. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.