Title of paper:
|
On intuitionistic fuzzy modal topological structures with modal operator of second type
|
Author(s):
|
Krassimir Atanassov
|
Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
|
krat@bas.bg
|
|
Presented at:
|
International Workshop on Intuitionistic Fuzzy Sets, founded by Prof. Beloslav Riečan, 2 December 2022, Banská Bystrica, Slovakia
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 457–463
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.4.457-463
|
Download:
|
PDF (192 Kb, File info)
|
Abstract:
|
Two new Intuitionistic Fuzzy Modal Feeble Topological Structures (IFMFTSs) are introduced of fifth and sixth types. Examples for these structures are given.
|
Keywords:
|
Intuitionistic fuzzy set, Intuitionistic fuzzy modal topological structure.
|
AMS Classification:
|
03E72.
|
References:
|
- Angelova, N., & Stoenchev, M. (2105/2016). Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
- Angelova, N., & Stoenchev, M. (2017). Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
- Atanassov, K. (2008). Intuitionistic fuzzy implication →ε,η and intuitionistic fuzzy negation ¬ε,η. Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, 1, 1–10.
- Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
- Atanassov, K. (2022). Intuitionistic Fuzzy Modal Topological Structure. Mathematics 10, 3313.
- Atanassov, K. (2022). On the intuitionistic fuzzy modal feeble topological structures. Notes on Intuitionistic Fuzzy Sets, 28(3), 211–222.
- Atanassov, K. On four intuitionistic fuzzy feeble topological structures. Proceedings of the 11th Int. IEEE Conf. “Intelligent Systems”, Warsaw, 13–15 Oct. 2022 (in press).
- Atanassov, K. On intuitionistic fuzzy extended modal topological structures. Proceedings of the 20th Int. Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, Warsaw, 15 Oct. 2022 (in press).
- Blackburn, P., van Bentham, J., & Wolter, F. (2006). Modal Logic, North Holland, Amsterdam.
- Bourbaki, N. (1960). Éléments de Mathématique, Livre III: Topologie Générale, Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes. Herman, Paris (Third Edition, in French).
- Feys, R. (1965). Modal Logics, Gauthier, Paris.
- Kuratowski, K. (1966). Topology: Volume 1, Academic Press, New York.
- Mints, G. (1992). A Short Introduction to Modal Logic. University of Chicago Press, Chicago.
- Munkres, J. (2000). Topology, Prentice Hall Inc., New Jersey.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|