As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

Issue:Intuitionistic fuzzy soft generalized superconnectedness

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/2/44-51
Title of paper: Intuitionistic fuzzy soft generalized superconnectedness
Author(s):
M. Elomari
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
said.melliani@gmail.com
I. Bakhadach
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Presented at: International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 2, pages 44—51
Download:  PDF (127  Kb, File info)
Abstract: We introduce a new notion intuitionistic fuzzy soft superconnectedness. The main purpose of this paper is to study generalized intuitionistic fuzzy soft superconnected spaces.
Keywords: Intuitionistic fuzzy soft set, Intuitionistic fuzzy soft toplogy, intuitionistic fuzzy soft mapping.
AMS Classification: 03E72.
References:
  1. Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin
  2. Csázar, A. (2005) Generalized open sets in generalized topologies, Acta math. Hungar, 106, 53–66.
  3. Kharal, A. & Ahmad, B. Mappings on soft classes, to appear in New Math. Nat. Comput.
  4. Kannan, K. (2012) Soft Generalizied Closed Sets In Soft Topological Spaces, J. Theoret. Appl. Inf.Tech. 37, 17–21.
  5. Maji, P. K., Biswas, R. & Roy, A. R. (2001) Intutionistiv fuzzy soft sets, J. Fuzzy Math., 9(3), 677–693.
  6. Molodtsov, D. (1999) Soft set theory-first results, Computers and Mathematics with Applications, 37, 19–31.
  7. Shabir, M. & Naz. M. (2011) On soft topological spaces, Comput. Math. Appl. 61, 1786-1799.
  8. Zorlutuna, I., Akdag, M., Min, W. K., & Atmaca, S. (2012) Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3(2), 171–185.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.