As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Intuitionistic fuzzy quasi-interior ideals of semigroups

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/27/4/36-43
Title of paper: Intuitionistic fuzzy quasi-interior ideals of semigroups
Author(s):
Sinem Tarsuslu (Yılmaz)
Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
sinemtarsuslu@tarsus.edu.tr
Gökhan Çuvalcioğlu
Department of Mathematics, Faculty of Arts and Sciences, Mersin University, Mersin, Turkey
gcuvalcioglu@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 4, pages 36-43
DOI: https://doi.org/10.7546/nifs.2021.27.4.36-43
Download:  PDF (189  Kb, File info)
Abstract: In this study, it is purposed to introduced the concept of quasi-interior ideal on intuitionistic fuzzy semigroups. The concept introduced is supported with examples and its basic algebraic properties are examined.
Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy semigroups, Quasi-interior ideals
AMS Classification: 03E72, 08A72.
References:
  1. Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Heidelberg.
  3. Atanassova, L. (2007). On intuitionistic fuzzy versions of L. Zadeh's extension principle. Notes on Intuitionistic Fuzzy Sets, 13(3), 33-36.
  4. Birkhoff, G. (1940). Lattice Theory, American Mathematical Society, United States of America, p. 418.
  5. Çuvalcioğlu, G., & Tarsuslu (Yılmaz), S. (2017). Universal algebra in intuitionistic fuzzy set theory. Notes on Intuitionistic Fuzzy Sets, 23(1), 1–5.
  6. Davvaz, B., & Majumder, S. K. (2011). Atanassov’s Intuitionistic Fuzzy Interior Ideals of Γ−semigroups. University Politehnica of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics, 73(3), 45–60.
  7. Hur, K., Jang, S. Y., & Lim, P. K. (2008). Intuitionistic Fuzzy Semigroups. International Journal of Fuzzy Logic and Intelligent Systems, 8(3), 207–219.
  8. Hur, K., Jang, S. Y., & Ryou, H. W. (2004). Intuitionistic fuzzy ideals and bi-ideals, Honam Mathematical Journal, 26(3), 309–330.
  9. Khan, A., Shabir, M., & Jun, Y. B. (2010). Intuitionistic fuzzy quasi-ideals of ordered semigroups. Russian Mathematics (Iz. VUZ), 54(12), 59–71.
  10. Kim, K. H., & Jun, Y. B. (2001). Intuitionistic fuzzy interior ideals of semigroups. International Journal of Mathematics and Mathematical Sciences, 27(5), 261–267.
  11. Melliani, S., Elomari, M., Ettoussi, R., & Chadli, L. S. (2015). Intuitionistic fuzzy semigroup. Notes on Intuitionistic Fuzzy Sets, 21(2), 43–50.
  12. Murali Krishna Rao, M. (2020). Quasi-Interior Ideals and Fuzzy Quasi-Interior Ideals of Semigroups. Annals of Fuzzy Mathematics and Informatics, 19(2), 199–209.
  13. Murali Krishna Rao, M. (2020). Quasi-Interior Ideals and Weak-Interior Ideals, Asia Pacific Journal of Mathematics, 7, Art. 21.
  14. Shabir, M., & Khan, A. (2009). Intuitionistic Fuzzy Interior Ideals in Ordered Semigroups. Journal of Applied Mathematics and Informatics, 27(5–6), 1447–1457.
  15. Tarsuslu (Yılmaz), S., & Çuvalcioğlu, G. (2019). (T, S)–Intuitionistic Fuzzy Algebras. Journal of Intelligent & Fuzzy Systems, 36(1), 139–147.
  16. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.