As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:(α,β)-Interval-valued intuitionistic fuzzy subgroups

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/2/195-206
Title of paper: (α,β)-Interval-valued intuitionistic fuzzy subgroups
Author(s):
Gökhan Çuvalcıoğlu     0000-0001-5451-3336
Department of Mathematics, Faculty of Science, Mersin University, Mersin, Türkiye
gcuvalcioglu@gmail.com
Arif Bal     0000-0003-4386-7416
Department of Mathematics, Faculty of Science, Mersin University, Mersin, Türkiye
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 2, pages 195–206
DOI: https://doi.org/10.7546/nifs.2025.31.2.195-206
Download:  PDF (787  Kb, File info)
Abstract: In this paper, (α,β)-interval-valued intuitionistic fuzzy subgroups are studied. The definition of these structures are given by using (α,β)-interval-valued intuitionistic fuzzy sets. The structural properties of these subgroups are studied. Some examples are given about these structures to satisfy the conditions of propositions.
Keywords: Interval-valued intuitionistic fuzzy sets, (α,β)-interval-valued intuitionistic fuzzy sets, (α,β)-interval-valued intuitionistic fuzzy subgroups
AMS Classification: 03E72, 18B40, 08A72.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June, (deposed in Central Sci.-Techn. Library of Bulg. Acad. Of Sci. No. 1697/84 (in Bulgarian). Reprinted: International Journal Bioautomation, 20 (1), 2016, S1–S6.
  2. Atanassov, K. T., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–349.
  3. Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64(2), 159–174.
  4. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg.
  5. Atanassov, K. T. (2018). Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets. Advanced Studies in Contemporary Mathematics, 28(2), 167–176.
  6. Atanassov, K. T. (2024). Intuitionistic fuzzy modal multi-topological structures and intuitionistic fuzzy multi-modal multi-topological structures. Mathematics, 12(3), Article 361.
  7. Aygünoğlu, A., Varol Pazar, B., Çetkin, V., & Aygün, H. (2012). Interval-valued intuitionistic fuzzy subgroups on interval-valued double t-norm. Neural Computing & Applications, 21(1), 207–214.
  8. Bal, A., Çuvalcıoğlu, G., & Tuğrul, F. (2022). On some fundamental properties of α-interval valued fuzzy subgroups. Thermal Science, 26(Spec. Issue 2), 681–693.
  9. Bal, A., Çuvalcıoğlu, G., & Altıncı, C. (2023). (α, β)-Interval valued intuitionistic fuzzy sets defined on (α, β)-interval valued set. Journal of Universal Mathematics, 6(1), 114–130.
  10. Biswas, R. (1994). Rosenfeld’s fuzzy subgroups with interval-valued membership functions. Fuzzy Sets and Systems, 63(1), 87–90.
  11. Çuvalcıoğlu, G., Bal, A., & Çitil, M. (2022). The α-interval valued fuzzy sets defined on α-interval valued set. Thermal Science, 26(Spec. Issue 2), 665–679.
  12. Grattan-Guiness, I. (1976). Fuzzy membership mapped onto interval and many-valued quantities. Mathematical Logic Quarterly, 22(1), 149–160.
  13. Gorzałczany, M. B. (1983). Approximate inference with interval-valued fuzzy sets: An outline. Proceedings of the Polish Symposium on Interval and Fuzzy Mathematics, Poznan, 26–29 August 1983, 89–95.
  14. Gorzałczany, M. B. (1987). A method of inference in approximate reasoning based on interval-valued fuzzy set. Fuzzy Sets and Systems, 21(1), 1–17.
  15. Jahn, K. U. (1975). Intervall-wertige Mengen. Mathematische Nachrichten, 68, 115–132.
  16. Kang, H.-W., & Hur, K. (2010). Interval-valued fuzzy subgroups and rings. Honam Mathematical Journal, 32(4), 593–617.
  17. Li, X., & Wang G. (1996). TH-interval valued fuzzy subgroups. Journal of Lanzhou University, 32, 96–99.
  18. Li, X., & Wang, G. (2000). The SH-interval-valued fuzzy subgroups. Fuzzy Sets and Systems, 112(2), 319–325.
  19. Mondal, T. K., & Samanta, S. K. (1999). Topology of interval-valued fuzzy sets. Indian Journal of Pure and Applied Mathematics, 30(1), 20–38.
  20. Mondal, T. K., & Samanta, S. K. (2001). Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 119(3), 483–494.
  21. Pal, M., & Rashmanlou, H. (2013). Irregular interval-valued fuzzy graphs. Annals of Pure and Applied Mathematics, 3(1), 56–66.
  22. Rosenfeld, A. (1971). Fuzzy groups. Journal of Mathematical Analysis and Applications, 35(3), 512–517.
  23. Sambuc, R. (1975). Fonctions φ-floues. Application L’aide au Diagnostic en Pathologie Thyroidienne. Ph. D. Thesis, University of Marseille, France.
  24. Sharma, P. K. (2024). Intuitionistic fuzzy lattice ordered G-modules. Journal of Fuzzy Extension and Applications, 5(1), 141–158.
  25. Tarsuslu (Yılmaz), S. (2023). A study on intuitionistic fuzzy topological operators. Italian Journal of Pure and Applied Mathematics, 49, 863–875.
  26. Tarsuslu (Yılmaz), S. (2022). Intuitionistic fuzzy quasi-interior ideals in ordered Γ-semigroups. Annals of Oradea University, 29(1), 71–80.
  27. Tarsuslu (Yılmaz), S. & Çuvalcıoğlu, G. (2021). Intuitionistic fuzzy quasi-interior ideals of semigroups. Notes on Intuitionistic Fuzzy Sets, 27(4), 36–43.
  28. Turksen, I. (1986). Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2), 191–210.
  29. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
  30. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–I. Information Sciences, 8(3), 199–249.
  31. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–II. Information Sciences, 8(4), 301–357.
  32. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–III. Information Sciences, 9(1), 43–80.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.