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1 Introduction

The notion of fuzzy set was introduced as an extension of crisp sets by Zadeh [16]. In the
following years, many generalizations of fuzzy sets were defined. Atanassov introduced the
intuitionistic fuzzy set concept in 1983 [1] as an extension of fuzzy sets by enlarging the truth
value set to the lattice [0, 1] × [0, 1] with µA(x) + νA(x) ≤ 1 condition. Intuitionistic fuzzy sets
have membership degree and non-membership degree for an element in a given set. This theory
is widely used as it can obtain more precise results in decision making problems of many areas
such as health, finance, geographic marking, etc.
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Many algebraic concepts were extended into fuzzy sets and intuitionistic fuzzy sets by several
researchers [5–7, 9–12, 14, 15]. This workspace is still up-to-date. The concept of quasi-interior
ideal on semigroups was introduced by M. Murali Krishna Rao [13]. In this study, intuitionistic
fuzzy quasi-interior ideal on semigroups is studied.

Definition 1 ([1]). An intuitionistic fuzzy set (shortly, IFS) on a set X is an object of the form

A = {〈x, µA(x), νA(x)〉 : x ∈ X},

where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A”, νA(x),

(νA : X → [0, 1]) is called the “degree of non-membership of x in A”, and where µA and
νA satisfy the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.

The hesitation degree of x is defined by πA(x) = 1− µA(x)− νA(x).

Definition 2 ([1]). An IFS A is said to be contained in an IFS B (notation A v B) if and only if,
for all x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

It is clear that A = B if and only if A v B and B v A.

Definition 3 ([2] ). Let X be universal and A ∈ IFS(X), then

1. �(A) = {〈x, µA(x), 1− µA(x)〉 : x ∈ X}.

2. ♦(A) = {〈x, 1− νA(x), νA(x)〉 : x ∈ X}.

Definition 4 ( [1]). Let A ∈ IFS(X) and A = {〈x, µA(x), νA(x)〉 : x ∈ X}. Then the set Ac is
called the complement of A, where

Ac = {〈x, νA(x), µA(x)〉 : x ∈ X}.

The intersection and the union of two IFSs A and B on X are defined by

A uB = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 : x ∈ X} ,

A tB = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 : x ∈ X} .

Definition 5 ([3]). Let X be a semigroup and A,B be intuitionistic fuzzy subsets of X. Then the
extension principle would be as following;

A ◦B =

 sup
z=xy
{A (x) ∧B (y)} , ifz = xy

(0, 1) , otherwise.

for x, y, z ∈ X.
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Definition 6. LetM be a non-empty subset of S. The characteristic function ofM is an intuitionistic
fuzzy subset of S. It is denoted by χ

M
and defined as

χ
M

(x) =

{
(1, 0) , if x ∈M,

(0, 1) , if x /∈M.

A semigroup is an algebraic structure consisting of a non-empty set S together with an
associative binary operation [4]. A subsemigroup of S is a nonempty subset M of S such that
M2 ⊆ M. A subsemigroup M of S is called an interior ideal of S if SMS ⊆ M and called a
quasi-ideal if MS ∩ SM ⊆M.

An element x ∈ S is called regular in S if x ∈ xSx, where xSx = {xax : a ∈ S} . A
semigroup S is called regular if every element is regular.

Definition 7 ([13]). A non-empty subsetM of a semigroup S is said to be left (right) quasi-interior
ideal of S, if M is a subsemigroup of S and SMSM ⊆M (MSMS ⊆M) .

Definition 8 ([13] ). A non-empty subset M of a semigroup S is said to be a quasi-interior ideal
of S, if M is a sub semigroup of S and M is a left quasi-interior ideal and a right quasi-interior
ideal of S.

Remark 1. A quasi-interior ideal of a semigroup S need not be an interior ideal of a semigroup
S.

The generalization of semigroup concept to intuitionistic fuzzy sets has a wide range of study.
Some fundamental definitions are following:

Definition 9 ( [8]). Let S be a semigroup and A ∈ IFS (S) . A is called an intuitionistic fuzzy
subsemigroup of S, if A (xy) ≥ min {A (x) , A (y)}, for all x, y ∈ S.

Definition 10 ( [7]). Let S be a semigroup and A ∈ IFS (S) . A is called an intuitionistic fuzzy
left (respectively, right) ideal of S, if A (xy) ≥ A (y) (resp. A (xy) ≥ A (x)), for all x, y ∈ S.

Definition 11 ([13]). Let S be a semigroup. An intuitionistic fuzzy subsemigroup A of S is called
an intuitionistic fuzzy interior ideal of S if A (xay) ≥ A (a), for all x, y, a ∈ S.

Definition 12 ([9]). An intuitionistic fuzzy set A in a semigroup S is called an intuitionistic fuzzy
quasi-ideal of S, if

µA◦χ
S
∧ µχ

S
◦A ≤ µA and νA◦χ

S
∨ νχ

S
◦A ≥ νA.

2 Main results

In this section, we intorduce the concept of an intuitionistic fuzzy quasi-interior ideal on a
semigroup. The main theorems are proved and some properties are studied.

Definition 13. Let S is a semigroup and A ∈ IFS (S) is an intuitionistic fuzzy sub semigroup.
A is called an intuitionistic fuzzy left (respectively, right) quasi-interior ideal of S, if

χ
S
◦ A ◦ χ

S
◦ A ⊆ A (respectively, A ◦ χ

S
◦ A ◦ χ

S
⊆ A) .
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Example 1. Let S = {a, b, c, d, e} be a semigroup with the following operation:

• a b c d e

a a a a a a

b a a a b c

c a b c a a

d a a a d e

e a d e a a

ThenA = {(a, 0.7, 0.2), (b, 0.5, 0.4), (c, 0.3, 0.6), (d, 0.5, 0.4), (e, 0.3, 0.6)} is an intuitionistic
fuzzy quasi-interior ideal of S. But, since A (de) � A (d), it is not an intuitionistic fuzzy ideal of
S and it is not intuitionistic fuzzy interior ideal either.

Theorem 1. Let S be a semigroup and A ∈ IFS (S). If A is an intuitionistic fuzzy quasi-interior
ideal, then �(A) and ♦(A) are intuitionistic fuzzy quasi-interior ideals.

Proof. (i) Let x, y ∈ S,

µ�(A) (xy) = µA (xy) ≥ min {µA (x) , µA (y)}
= min

{
µ�(A) (x) , µ�(A) (y)

}
and

ν�(A) (xy) = 1− µA (xy) ≤ 1−min {µA (x) , µA (y)}
= max {1− µA (x) , 1− µA (y)}
= max

{
ν�(A) (x) , ν�(A) (y)

}
.

So, �(A) is an intuitionistic fuzzy subsemigroup of S.
(ii) Let x, y, z ∈ S,

µχ
S
◦�(A)◦χ

S
◦�(A) (z) = µχ

S
◦A◦χ

S
◦A (z) ≤ µA (z)

and for a, b, e, f ∈ S,

νχ
S
◦�(A)◦χ

S
◦�(A) (z) = inf

z=xy

{
max

{
νχ

S
◦�(A) (x) , νχ

S
◦�(A) (y)

}}
= inf

z=xy

max

 inf
x=ab

max
{
νχ

S
(a) , ν�(A) (b)

}
,

inf
y=ef

max
{
νχ

S
(e) , ν�(A) (f)

}



= inf
z=xy

max

 inf
x=ab

max
{

1− µχ
S

(a) , 1− µA (b)
}
,

inf
y=ef

max
{

1− µχ
S

(e) , 1− µA (f)
}



= 1−

sup
z=xy

min


sup
x=ab

min
{
µχ

S
(a) , µA (b)

}
,

sup
y=ef

min
{
µχ

S
(e) , µA (f)

}




≥ 1− µA (z) = ν�(A) (z) .
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We obtain that �(A) is an intuitionistic fuzzy left quasi-interior ideal on semigroup S.
On the other hand, similarly we can show that �(A) ◦ χS ◦ �(A) ◦ χ

S
⊆ �(A). Also ♦(A)

can be proved as above.

Theorem 2. Let S be a semigroup. If {Ai}i∈Λ is a family of intuitionistic fuzzy quasi-interior
ideals of S, then

⋂
i∈Λ

Ai is an intuitionistic fuzzy quasi-interior ideal on S.

Proof. Let x, y ∈ S and B =
⋂
i∈Λ

Ai,

µB (xy) = inf
i∈Λ
µAi

(xy) ≥ inf
i∈Λ
{min {µAi

(x) , µAi
(y)}}

= min

{
inf
i∈Λ
µAi

(x) , inf
i∈Λ
µAi

(y)

}
= min {µB (x) , µB (y)} .

Also,

νB (xy) = sup
i∈Λ

νAi
(xy) ≤ sup

i∈Λ
{max {νAi

(x) , νAi
(y)}}

= max

{
sup
i∈Λ

νAi
(x) , sup

i∈Λ
νAi

(y)

}
= max {νB (x) , νB (y)}

Hence, B =
⋂
i∈Λ

Ai is an intuitionistic fuzzy subsemigroup of S.

Now, let x, y, z ∈ S, then,

µχ
S
◦B◦χ

S
◦B (z) = sup

z=xy
min

{
µχ

S
◦B (x) , µχS◦B (y)

}

= sup
z=xy

min


sup
x=ab

min

(
µχ

S
(a) , inf

i∈Λ
µAi

(b)

)
,

sup
y=ef

min

(
µχ

S
(e) , inf

i∈Λ
µAi

(f)

)


= sup
z=xy

min


inf
i∈Λ

(
sup
x=ab

min
(
µχ

S
(a) , µAi

(b)
))

,

inf
i∈Λ

(
sup
y=ef

min
(
µχ

S
(e) , µAi

(f)
))


= inf

i∈Λ

sup
z=xy

min


sup
x=ab

min
(
µχ

S
(a) , µAi

(b)
)
,

sup
y=ef

min
(
µχ

S
(e) , µAi

(f)
)

 ,

for a, b, e, f ∈ S. Since

sup
z=xy

min

{
sup
x=ab

min
(
µχ

S
(a) , µAi

(b)
)
, sup
y=ef

min
(
µχ

S
(e) , µAi

(f)
)}
≤ µAi

(z) ,∀i ∈ Λ ,

then µχ
S
◦B◦χ

S
◦B (z) ≤ inf

i∈Λ
µAi

(z) .

Similarly, it can be shown that νχ
S
◦B◦χ

S
◦B (z) ≥ sup

i∈Λ
νAi

(z) .

Therefore,
⋂
i∈Λ

Ai is an intuitionistic fuzzy left quasi-interior ideal on semigroup S. Also, in a

similar way, it can be proven
⋂
i∈Λ

Ai ◦ χS
◦
⋂
i∈Λ

Ai ◦ χS
⊆
⋂
i∈Λ

Ai.
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Theorem 3. Let S be a semigroup and I be a non-empty subset of S. I is a quasi-interior ideal
of S if and only if χ

I
is an intuitionistic fuzzy quasi-interior ideal on S.

Proof. ⇒) If z∈SISI and z = xayb is such that x, y ∈ S, a, b ∈ I , then z∈I and χ
I
(z)=(1, 0).

µχ
S
◦χ

I
◦χ

S
◦χ

I
(z) = sup

z=uv
min

{
µχ

S
◦χ

I
(u) , µχ

S
◦χ

I
(v)
}

= sup
z=uv

min

{
sup
u=xa

(
µχ

S
(x) ∧ µχ

I
(a)
)
, sup
v=yb

(
µχ

S
(y) ∧ µχ

I
(b)
)}

= sup
z=uv

min

{
sup
u=xa

µχI
(a) , sup

v=yb
µχ

I
(b)

}
= 1

and

νχ
S
◦χ

I
◦χ

S
◦χ

I
(z) = inf

z=uv
max

{
νχ

S
◦χ

I
(u) , νχ

S
◦χ

I
(v)
}

= inf
z=uv

max

{
inf
u=xa

(
νχ

S
(x) ∨ νχ

I
(a)
)
, inf
v=yb

(
νχ

S
(y) ∨ νχI

(b)
)}

= inf
z=uv

max

{
inf
u=xa

νχI
(a) , inf

v=yb
νχ

I
(b)

}
= 0

⇒ χ
S
◦ χ

I
◦ χ

S
◦ χ

I
⊆ χ

I
. Similarly we can show that χ

I
◦ χ

S
◦ χI ◦ χS

⊆ χ
I
.

⇐) Let z ∈ SISI and z = xayb is such that x, y ∈ S, a, b ∈ I .

χ
I

(z) ≥ χ
S
◦ χ

I
◦ χ

S
◦ χ

I
(z)

= sup
z=uv

min

{
sup
u=xa

(χS (x) ∧ χ
I

(a)) , sup
v=yb

(χ
S

(y) ∧ χ
I

(b))

}
= (1, 0)⇒ z ∈ I ⇒ SISI ⊆ I

and also it is clear that ISIS ⊆ I.

Proposition 1. Let S be a semigroup and A be an intuitionistic fuzzy ideal of S. Then A is an
intuitionistic fuzzy quasi-interior ideal on S.

Proof. For x ∈ S,

A ◦ χ
S

(x) = sup
x=ab

min {A (a) , χ
S

(b)}

= sup
x=ab

A (a)

≤ sup
x=ab

A (aβb) = A (x) .

From this inequality we have:

A ◦ χ
S
◦ A ◦ χ

S
(z) = sup

z=xy
min {A ◦ χ

S
(x) , A ◦ χ

S
(y)}

≤ sup
z=xy

min

{
sup
x=ab

A (ab) , sup
y=cd

A (cd)

}
= sup

z=xy
min {A (x) , A (y)}

= A (z) .

Therefore, it is clear that χ
S
◦ A ◦ χ

S
◦ A ⊆ A.

A is an intuitionistic fuzzy quasi-interior ideal on S.
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The converse of Proposition 1 is not true in general, however, the concepts of intuitionistic
fuzzy ideals and intuitionistic fuzzy quasi-interior ideals on regular semigroup coincide.

Proposition 2. Let S be a regular semigroup and A be an intuitionistic fuzzy quasi-interior ideal
of S. Then A is an intuitionistic fuzzy ideal of S.

Proof. Let A ◦ χ
S
◦ A ◦ χ

S
⊆ A and x, y ∈ S. Since S is regular there exists a ∈ S such that

x = xax.

A (xy) = A (xaxy) ≥ A ◦ χ
S
◦ A ◦ χ

S
(xy)

= sup
xy=xaxy

(A ◦ χ
S

(xa) ∧ A ◦ χ
S

(xy))

= sup
xy=xaxy

(
sup
u

min {A (x) , χ
S

(a)} ∧ sup
v

min {A (x) , χ
S

(y)}
)

= A (x) ,

where u = xa, v = xy.
Similarly, we can show that A (xy) ≥ A (y) . Thus A is an intuitionistic fuzzy ideal of S.

3 Conclusion

In this study, the concept of intuitionistic fuzzy quasi-interior ideal is introduced and has been
shown with the counterexample that this concept is different from quasi-ideal and interior ideal.
Basic algebraic properties have been proven.
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