As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Intuitionistic fuzzy probability and two theorems from extreme value theory

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/2/127-138
Title of paper: Intuitionistic fuzzy probability and two theorems from extreme value theory
Author(s):
Katarína Čunderlíková     0000-0002-9772-2717
Mathematical Institute, Slovak Academy of Sciences, Stefánikova 49, 814 73 Bratislava, Slovakia
cunderlikova.lendelova@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 2, pages 127–138
DOI: https://doi.org/10.7546/nifs.2025.31.2.127-138
Download:  PDF (176  Kb, File info)
Abstract: The aim of this contribution is to formulate a variation of Fisher—Tipett—Gnedenko theorem and a variation of Pickand—Balkema—de Haan theorem for intuitionistic fuzzy observables using an intuitionistic fuzzy probability. Such the intuitionistic fuzzy probability can be decomposed to two intuitionistic fuzzy states, we will try to apply the results from extreme value theory, which were proving in connection with the intuitionistic fuzzy state, see papers [4, 8].
Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy probability, Intuitionistic fuzzy observables, Joint intuitionistic fuzzy observables, Independence, Excess intuitionistic fuzzy distribution, Maximum domain of attraction for intutionistic fuzzy probability, Fisher—Tipett—Gnedenko theorem, Pickands—Balkema—de Haan theorem.
AMS Classification: 03F55, 94D05, 03E72, 60B10, 60B12, 62E17, 62G32.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 20(1), S1–S6.
  2. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York.
  3. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets. Springer, Berlin.
  4. Bartková, R., & Čunderlíková, K. (2018). About Fisher–Tippett–Gnedenko Theorem for Intuitionistic Fuzzy Events. Advances in Fuzzy Logic and Technology 2017, J. Kacprzyk et al. eds. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Vol. 641, Springer, Cham, 125–135.
  5. Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.
  6. Čunderlíková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
  7. Čunderlíková, K. (2022). Intuitionistic fuzzy probability and convergence of intuitionistic fuzzy observables. Notes on Intuitionistic Fuzzy Sets, 28(4), 381–396.
  8. Čunderlíková, K., & Bartková, R. (2018). The Pickands–Balkema–de Haan theorem for intuitionistic fuzzy events. Notes on Intuitionistic Fuzzy Sets, 24(2), 63–75.
  9. Čunderlíková, K., & Riečan, B. (2021). Convergence of intuitionistic fuzzy observables. In: Advances in Intelligent Systems and Computing. Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives, IWIFSGN 2018. Advances in Intelligent Systems and Computing, vol 1081. Springer, Cham, pp. 29–39.
  10. Lendelová, K. (2005). Convergence of IF-observables. Issues in the Representation and Processing of Uncertain and Imprecise Information – Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics, EXIT, Warsaw, 232–240.
  11. Lendelová, K. (2006). Conditional IF-probability. Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, 37, Springer, Berlin, Heidelberg, 275–283.
  12. Lendelová, K. (2006). Strong law of large numbers for IF-events. Proceedings of the Eleventh International Conference IPMU 2006, 2–7 July 2006, Paris, France, 2363–2366.
  13. Riečan, B. (2003). A descriptive definition of the probability on intuitionistic fuzzy sets. EUSFLAT’2003 (M. Wagenecht, R. Hampet eds.), Zittau-Goerlitz Univ. Appl. Sci., 210–213.
  14. Riečan, B. (2004). Representation of probabilities on IFS events. Soft Methodology and Random Information Systems (Lopez-Diaz et al. eds.), Springer, Berlin–Heidelberg–New York, 243-248.
  15. Riečan, B. (2005). On the probability on IF-sets and MV-algebras. Notes on Intuitionistic Fuzzy Sets, 11(6), 21–25.
  16. Riečan, B. (2006). On the probability and random variables on IF events. Applied Artificial Intelligence, Proc. 7th FLINS Conference, Genova (Ruan, D., et al. (Eds.). 138–145.
  17. Riečan, B. (2007). Probability theory on IF events. Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science, vol 4460, Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. eds., Springer, Berlin–Heidelberg, 290–308.
  18. Riečan, B. (2012). Analysis of fuzzy logic models, Intelligent systems (Koleshko, V. (Ed.). INTECH, 219–244.
  19. Riečan, B., & Neubrunn, T. (1997). Integral, Measure, and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
  20. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–358.
  21. Zadeh, L. A. (1968). Probability measures on fuzzy sets. Journal of Mathematical Analysis and Applications, 23, 421–427.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.