As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy probability and convergence of intuitionistic fuzzy observables

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/4/381-396
Title of paper: Intuitionistic fuzzy probability and convergence of intuitionistic fuzzy observables
Author(s):
Katarína Čunderlíková
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
cunderlikova.lendelova@gmail.com
Presented at: International Workshop on Intuitionistic Fuzzy Sets, founded by Prof. Beloslav Riečan, 2 December 2022, Banská Bystrica, Slovakia
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 381–396
DOI: https://doi.org/10.7546/nifs.2022.28.4.381-396
Download:  PDF (234  Kb, File info)
Abstract: The aim of this contribution is to define a convergence in distribution, a convergence in measure and an almost everywhere convergence with respect to an intuitionistic fuzzy probability. We prove a version of Central limit theorem, a version of Weak law of large numbers and a version of Strong law of large numbers for intuitionistic fuzzy observables with respect to the intuitionistic fuzzy probability. We study a connection between convergence of intuitionistic fuzzy observables with respect to the intuitionistic fuzzy probability and a convergence of random variables, too.
Keywords: Intuitionistic fuzzy event, Intuitionistic fuzzy probability, Intuitionistic fuzzy observable, Convergence in distribution, Convergence in measure, Almost everywhere convergence, Central limit theorem, Weak law of large numbers, Strong law of large numbers.
AMS Classification: 03B52, 60A86, 60B10, 60F05, 60F15.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Repr. (2016) Int. J. Bioautomation, 20(S1), S1–S6 (in English).
  2. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York.
  3. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  4. Bartková, R., & Čunderlíková, K. (2018). About Fisher–Tippett–Gnedenko Theorem for Intuitionistic Fuzzy Events. Advances in Fuzzy Logic and Technology 2017, J. Kacprzyk et al. eds. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, 641, Springer, Cham, 125–135.
  5. Čunderlíková, K. (2018). Upper and lower limits and m-almost everywhere convergence of intuitionistic fuzzy observables. Notes on Intuitionistic Fuzzy Sets, 24(4), 40–49.
  6. Čunderlíková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
  7. Čunderlíková, K. (2020). A note on mean value and dispersion of intuitionistic fuzzy events. Notes on Intuitionistic Fuzzy Sets, 26(4), 1–8.
  8. Čunderlíková, K. (2021). Intuitionistic Fuzzy Probability and Almost Everywhere Convergence. Advances and New Developments in Fuzzy Logic and Technology. Advances in Intelligent Systems and Computing, 1308, 54–65.
  9. Čunderlíková, K. (2022). Convergence of functions of several intuitionistic fuzzy observables. Proceedings of IWIFSGN’2022, 14 October, 2022, Warszawa, Poland, submitted.
  10. Čunderlíková, K., & Babicova, D. (2022). Convergence in measure of intuitionistic fuzzy observables. Notes on Intuitionistic Fuzzy Sets, 28(3), 228–237.
  11. Čunderlíková, K., & Riečan, B. (2021). Convergence of intuitionistic fuzzy observables. Advances in Intelligent Systems and Computing. Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives, 1081, 29–39.
  12. Lendelová, K. (2005). Convergence of IF-observables. Issues in the Representation and Processing of Uncertain and Imprecise Information - Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized nets, and Related Topics, EXIT, Warsaw, 232–240.
  13. Lendelová, K. (2006). Strong law of large numbers for IF-events. Proceedings of the Eleventh International Conference IPMU 2006, 2–7 July 2006, Paris, France, 2363–2366.
  14. Lendelová, K. (2006). Conditional IF-probability. Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, 37, Springer, Berlin, Heidelberg, 275–283.
  15. Lendelová, K., & Riečan, B. (2004). Weak law of large numbers for IF-events. De Baets, B., et al. (eds.) Current Issues in Data and Knowledge Engineering. EXIT, Warszawa, 309–314.
  16. Nowak, P., & Hryniewicz, O. (2016). On generalized versions of central limit theorems for IF-events. Information Sciences, 355–356, 299–313.
  17. Nowak, P., & Hryniewicz, O. (2021). M-Probabilistic Versions of the Strong Law of Large Numbers. Advances and New Developments in Fuzzy Logic and Technology. IWIFSGN 2019. Advances in Intelligent Systems and Computing, Springer, Cham, 1308, 46–53.
  18. Petrovičová, J., & Riečan, B. (2005). On the Central limit theorem on IFS-events. Mathware and Soft Computing, XII(7), 5–14.
  19. Riečan, B. (2003). A descriptive definition of the probability on intuitionistic fuzzy sets. EUSFLAT ’2003, M. Wagenecht, R. Hampet eds., Zittau-Goerlitz Univ. Appl. Sci., 263–266.
  20. Riečan, B. (2005). On the probability on IF-sets and MV-algebras. Notes on Intuitionistic Fuzzy Sets, 11(6), 21–25.
  21. Riečan, B. (2006). On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 152, 1485–1490.
  22. Riečan, B. (2006). On the probability and random variables on IF events. Ruan, D., et al. (eds.) Applied Artificial Intelligence, Proc. 7th FLINS Conf. Genova, 138–145.
  23. Riečan, B. (2007). Probability Theory on IF Events. Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science, vol 4460, Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. eds., Springer, Berlin, Heidelberg, 290–308.
  24. Riečan, B. (2012). Analysis of fuzzy logic models. Koleshko, V. (ed.). Intelligent Systems, INTECH, 219–244.
  25. Riečan, B., & Neubrunn, T. (1997). Integral, Measure, and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.