As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Help:Formulas

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
First steps Page editing Page management Namespaces Tools and settings
Starting a new page • Edit mode • Text formatting • Formulas • Tables • Images • Categories • Templates • References • Subpages

Formulas on a wiki like Ifigenia can be represented in three ways, depending on the formula complexity and tools used:

  • Unicode characters - for simple formulas, of course :-)
  • Images - for formulas of any complexity, created as an image file (preferably .png or .gif) and uploaded locally.
  • TeX code - for formulas of any complexity - from very simple to extremely sophisticated

Maybe, for the users of Ifigenia TeX-coded formulas may turn out to be the most natural ones. They allow relatively good integration with other TeX documents and they can be further saved as .gif images, for the sake of integration with Word documents.

Formulas in TeX

In the wiki websites, TeX-formulas are distinguished from the rest of the text by enclosing them with the tags <math> </math>. A handy way is to click the Math button and then write between the tags.

On Ifigenia, the TeX formulas are rendered using an external service, so the process may be a bit slower


Here is a reference list for the various TeX commands in use.

Functions, symbols, special characters

Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} [math]\displaystyle{ \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\! }[/math]
\check{a} \bar{a} \ddot{a} \dot{a} [math]\displaystyle{ \check{a} \bar{a} \ddot{a} \dot{a}\,\! }[/math]

Standard functions

\sin a \cos b \tan c [math]\displaystyle{ \sin a \cos b \tan c\,\! }[/math]
\sec d \csc e \cot f [math]\displaystyle{ \sec d \csc e \cot f\,\! }[/math]
\arcsin h \arccos i \arctan j [math]\displaystyle{ \arcsin h \arccos i \arctan j\,\! }[/math]
\sinh k \cosh l \tanh m \coth n [math]\displaystyle{ \sinh k \cosh l \tanh m \coth n\,\! }[/math]
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q [math]\displaystyle{ \operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\,\! }[/math]
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t [math]\displaystyle{ \operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\! }[/math]
\lim u \limsup v \liminf w \min x \max y [math]\displaystyle{ \lim u \limsup v \liminf w \min x \max y\,\! }[/math]
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g [math]\displaystyle{ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\! }[/math]
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n [math]\displaystyle{ \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\! }[/math]

Modular arithmetic

s_k \equiv 0 \pmod{m} [math]\displaystyle{ s_k \equiv 0 \pmod{m}\,\! }[/math]
a\,\bmod\,b [math]\displaystyle{ a\,\bmod\,b\,\! }[/math]

Derivatives

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} [math]\displaystyle{ \nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} }[/math]

Sets

\forall \exists \empty \emptyset \varnothing [math]\displaystyle{ \forall \exists \empty \emptyset \varnothing\,\! }[/math]
\in \ni \not \in \notin \subset \subseteq \supset \supseteq [math]\displaystyle{ \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\! }[/math]
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus [math]\displaystyle{ \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\! }[/math]
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup [math]\displaystyle{ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\! }[/math]

Operators

+ \oplus \bigoplus \pm \mp - [math]\displaystyle{ + \oplus \bigoplus \pm \mp - \,\! }[/math]
\times \otimes \bigotimes \cdot \circ \bullet \bigodot [math]\displaystyle{ \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\! }[/math]
\star * / \div \frac{1}{2} [math]\displaystyle{ \star * / \div \frac{1}{2}\,\! }[/math]

Logic

\land (or \and) \wedge \bigwedge \bar{q} \to p [math]\displaystyle{ \land \wedge \bigwedge \bar{q} \to p\,\! }[/math]
\lor \vee \bigvee \lnot \neg q \And [math]\displaystyle{ \lor \vee \bigvee \lnot \neg q \And\,\! }[/math]

Root

\sqrt{2} \sqrt[n]{x} [math]\displaystyle{ \sqrt{2} \sqrt[n]{x}\,\! }[/math]

Relations

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} [math]\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\! }[/math]
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto [math]\displaystyle{ \le \lt \ll \gg \ge \gt \equiv \not\equiv \ne \mbox{or} \neq \propto\,\! }[/math]

Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ [math]\displaystyle{ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\! }[/math]

Arrows

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow [math]\displaystyle{ \leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\! }[/math]
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff) [math]\displaystyle{ \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \,\! }[/math]
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow [math]\displaystyle{ \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \,\! }[/math]
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons [math]\displaystyle{ \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\! }[/math]
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright [math]\displaystyle{ \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\! }[/math]
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft [math]\displaystyle{ \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\! }[/math]
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow [math]\displaystyle{ \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\! }[/math]

Special

\And \eth \S \P \% \dagger \ddagger \ldots \cdots [math]\displaystyle{ \And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\! }[/math]
\smile \frown \wr \triangleleft \triangleright \infty \bot \top [math]\displaystyle{ \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\! }[/math]
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar [math]\displaystyle{ \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\! }[/math]
\ell \mho \Finv \Re \Im \wp \complement [math]\displaystyle{ \ell \mho \Finv \Re \Im \wp \complement\,\! }[/math]
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp [math]\displaystyle{ \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\! }[/math]

Unsorted (new stuff)

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown [math]\displaystyle{ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }[/math]
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge [math]\displaystyle{ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge }[/math]
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes [math]\displaystyle{ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }[/math]
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant [math]\displaystyle{ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }[/math]
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq [math]\displaystyle{ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }[/math]
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft [math]\displaystyle{ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }[/math]
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot [math]\displaystyle{ \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot }[/math]
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq [math]\displaystyle{ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }[/math]
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork [math]\displaystyle{ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork }[/math]
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq [math]\displaystyle{ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }[/math]
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid [math]\displaystyle{ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }[/math]
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr [math]\displaystyle{ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }[/math]
\subsetneq [math]\displaystyle{ \subsetneq }[/math]
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq [math]\displaystyle{ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }[/math]
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq [math]\displaystyle{ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }[/math]
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq [math]\displaystyle{ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }[/math]
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus [math]\displaystyle{ \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\! }[/math]
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq [math]\displaystyle{ \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\! }[/math]
\dashv \asymp \doteq \parallel [math]\displaystyle{ \dashv \asymp \doteq \parallel\,\! }[/math]
\ulcorner \urcorner \llcorner \lrcorner [math]\displaystyle{ \ulcorner \urcorner \llcorner \lrcorner }[/math]

Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 [math]\displaystyle{ a^2 }[/math] [math]\displaystyle{ a^2 \,\! }[/math]
Subscript a_2 [math]\displaystyle{ a_2 }[/math] [math]\displaystyle{ a_2 \,\! }[/math]
Grouping a^{2+2} [math]\displaystyle{ a^{2+2} }[/math] [math]\displaystyle{ a^{2+2}\,\! }[/math]
a_{i,j} [math]\displaystyle{ a_{i,j} }[/math] [math]\displaystyle{ a_{i,j}\,\! }[/math]
Combining sub & super x_2^3 [math]\displaystyle{ x_2^3 }[/math]
Super super 10^{10^{ \,\!{8} } [math]\displaystyle{ 10^{10^{ \,\! 8 } } }[/math]
Super super 10^{10^{ \overset{8}{} }} [math]\displaystyle{ 10^{10^{ \overset{8}{} }} }[/math]
Super super (wrong in HTML in some browsers) 10^{10^8} [math]\displaystyle{ 10^{10^8} }[/math]
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b [math]\displaystyle{ \sideset{_1^2}{_3^4}\prod_a^b }[/math]
{}_1^2\!\Omega_3^4 [math]\displaystyle{ {}_1^2\!\Omega_3^4 }[/math]
Stacking \overset{\alpha}{\omega} [math]\displaystyle{ \overset{\alpha}{\omega} }[/math]
\underset{\alpha}{\omega} [math]\displaystyle{ \underset{\alpha}{\omega} }[/math]
\overset{\alpha}{\underset{\gamma}{\omega}} [math]\displaystyle{ \overset{\alpha}{\underset{\gamma}{\omega}} }[/math]
\stackrel{\alpha}{\omega} [math]\displaystyle{ \stackrel{\alpha}{\omega} }[/math]
Derivative (forced PNG) x', y'', f', f''\!   [math]\displaystyle{ x', y'', f', f''\! }[/math]
Derivative (f in italics may overlap primes in HTML) x', y'', f', f'' [math]\displaystyle{ x', y'', f', f'' }[/math] [math]\displaystyle{ x', y'', f', f''\! }[/math]
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} [math]\displaystyle{ x^\prime, y^{\prime\prime} }[/math] [math]\displaystyle{ x^\prime, y^{\prime\prime}\,\! }[/math]
Derivative (wrong in PNG) x\prime, y\prime\prime [math]\displaystyle{ x\prime, y\prime\prime }[/math] [math]\displaystyle{ x\prime, y\prime\prime\,\! }[/math]
Derivative dots \dot{x}, \ddot{x} [math]\displaystyle{ \dot{x}, \ddot{x} }[/math]
Underlines, overlines, vectors \hat a \ \bar b \ \vec c [math]\displaystyle{ \hat a \ \bar b \ \vec c }[/math]
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} [math]\displaystyle{ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} }[/math]
\overline{g h i} \ \underline{j k l} [math]\displaystyle{ \overline{g h i} \ \underline{j k l} }[/math]
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C [math]\displaystyle{ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C }[/math]
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} [math]\displaystyle{ \overbrace{ 1+2+\cdots+100 }^{5050} }[/math]
Underbraces \underbrace{ a+b+\cdots+z }_{26} [math]\displaystyle{ \underbrace{ a+b+\cdots+z }_{26} }[/math]
Sum \sum_{k=1}^N k^2 [math]\displaystyle{ \sum_{k=1}^N k^2 }[/math]
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 [math]\displaystyle{ \textstyle \sum_{k=1}^N k^2 }[/math]
Product \prod_{i=1}^N x_i [math]\displaystyle{ \prod_{i=1}^N x_i }[/math]
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i [math]\displaystyle{ \textstyle \prod_{i=1}^N x_i }[/math]
Coproduct \coprod_{i=1}^N x_i [math]\displaystyle{ \coprod_{i=1}^N x_i }[/math]
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i [math]\displaystyle{ \textstyle \coprod_{i=1}^N x_i }[/math]
Limit \lim_{n \to \infty}x_n [math]\displaystyle{ \lim_{n \to \infty}x_n }[/math]
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n [math]\displaystyle{ \textstyle \lim_{n \to \infty}x_n }[/math]
Integral \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx [math]\displaystyle{ \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math]
Integral (alternate limits style) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx [math]\displaystyle{ \int_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math]
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx [math]\displaystyle{ \textstyle \int\limits_{-N}^{N} e^x\, dx }[/math]
Integral (force \textstyle, alternate limits style) \textstyle \int_{-N}^{N} e^x\, dx [math]\displaystyle{ \textstyle \int_{-N}^{N} e^x\, dx }[/math]
Double integral \iint\limits_D \, dx\,dy [math]\displaystyle{ \iint\limits_D \, dx\,dy }[/math]
Triple integral \iiint\limits_E \, dx\,dy\,dz [math]\displaystyle{ \iiint\limits_E \, dx\,dy\,dz }[/math]
Quadruple integral \iiiint\limits_F \, dx\,dy\,dz\,dt [math]\displaystyle{ \iiiint\limits_F \, dx\,dy\,dz\,dt }[/math]
Line or path integral \int_C x^3\, dx + 4y^2\, dy [math]\displaystyle{ \int_C x^3\, dx + 4y^2\, dy }[/math]
Closed line or path integral \oint_C x^3\, dx + 4y^2\, dy [math]\displaystyle{ \oint_C x^3\, dx + 4y^2\, dy }[/math]
Intersections \bigcap_1^n p [math]\displaystyle{ \bigcap_1^n p }[/math]
Unions \bigcup_1^k p [math]\displaystyle{ \bigcup_1^k p }[/math]

Alphabets and typefaces

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta [math]\displaystyle{ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\! }[/math]
\Eta \Theta \Iota \Kappa \Lambda \Mu [math]\displaystyle{ \Eta \Theta \Iota \Kappa \Lambda \Mu \,\! }[/math]
\Nu \Xi \Pi \Rho \Sigma \Tau [math]\displaystyle{ \Nu \Xi \Pi \Rho \Sigma \Tau\,\! }[/math]
\Upsilon \Phi \Chi \Psi \Omega [math]\displaystyle{ \Upsilon \Phi \Chi \Psi \Omega \,\! }[/math]
\alpha \beta \gamma \delta \epsilon \zeta [math]\displaystyle{ \alpha \beta \gamma \delta \epsilon \zeta \,\! }[/math]
\eta \theta \iota \kappa \lambda \mu [math]\displaystyle{ \eta \theta \iota \kappa \lambda \mu \,\! }[/math]
\nu \xi \pi \rho \sigma \tau [math]\displaystyle{ \nu \xi \pi \rho \sigma \tau \,\! }[/math]
\upsilon \phi \chi \psi \omega [math]\displaystyle{ \upsilon \phi \chi \psi \omega \,\! }[/math]
\varepsilon \digamma \vartheta \varkappa [math]\displaystyle{ \varepsilon \digamma \vartheta \varkappa \,\! }[/math]
\varpi \varrho \varsigma \varphi [math]\displaystyle{ \varpi \varrho \varsigma \varphi\,\! }[/math]
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} [math]\displaystyle{ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\! }[/math]
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} [math]\displaystyle{ \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\! }[/math]
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} [math]\displaystyle{ \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\! }[/math]
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} [math]\displaystyle{ \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\! }[/math]
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} [math]\displaystyle{ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\! }[/math]
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} [math]\displaystyle{ \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\! }[/math]
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} [math]\displaystyle{ \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\! }[/math]
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} [math]\displaystyle{ \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\! }[/math]
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} [math]\displaystyle{ \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\! }[/math]
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} [math]\displaystyle{ \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\! }[/math]
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} [math]\displaystyle{ \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\! }[/math]
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} [math]\displaystyle{ \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\! }[/math]
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} [math]\displaystyle{ \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\! }[/math]
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} [math]\displaystyle{ \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\! }[/math]
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} [math]\displaystyle{ \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\! }[/math]
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} [math]\displaystyle{ \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\! }[/math]
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} [math]\displaystyle{ \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\! }[/math]
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} [math]\displaystyle{ \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\! }[/math]
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} [math]\displaystyle{ \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\! }[/math]
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} [math]\displaystyle{ \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\! }[/math]
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} [math]\displaystyle{ \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\! }[/math]
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} [math]\displaystyle{ \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\! }[/math]
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} [math]\displaystyle{ \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\! }[/math]
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} [math]\displaystyle{ \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\! }[/math]
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} [math]\displaystyle{ \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\! }[/math]
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} [math]\displaystyle{ \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\! }[/math]
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} [math]\displaystyle{ \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\! }[/math]
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} [math]\displaystyle{ \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\! }[/math]
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} [math]\displaystyle{ \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\! }[/math]
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} [math]\displaystyle{ \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\! }[/math]
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} [math]\displaystyle{ \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\! }[/math]
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} [math]\displaystyle{ \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\! }[/math]
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} [math]\displaystyle{ \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\! }[/math]
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} [math]\displaystyle{ \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\! }[/math]
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} [math]\displaystyle{ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\! }[/math]
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} [math]\displaystyle{ \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\! }[/math]
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} [math]\displaystyle{ \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\! }[/math]
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} [math]\displaystyle{ \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\! }[/math]
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} [math]\displaystyle{ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\! }[/math]
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} [math]\displaystyle{ \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\! }[/math]
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} [math]\displaystyle{ \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\! }[/math]
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} [math]\displaystyle{ \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\! }[/math]
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} [math]\displaystyle{ \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\! }[/math]
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} [math]\displaystyle{ \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\! }[/math]
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} [math]\displaystyle{ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\! }[/math]
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} [math]\displaystyle{ \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\! }[/math]
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} [math]\displaystyle{ \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\! }[/math]
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} [math]\displaystyle{ \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\! }[/math]
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} [math]\displaystyle{ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\! }[/math]
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} [math]\displaystyle{ \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\! }[/math]
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} [math]\displaystyle{ \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\! }[/math]
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} [math]\displaystyle{ \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\! }[/math]
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} [math]\displaystyle{ \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\! }[/math]
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} [math]\displaystyle{ \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\! }[/math]
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} [math]\displaystyle{ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\! }[/math]
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} [math]\displaystyle{ \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\! }[/math]
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} [math]\displaystyle{ \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\! }[/math]
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} [math]\displaystyle{ \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\! }[/math]
Hebrew
\aleph \beth \gimel \daleth [math]\displaystyle{ \aleph \beth \gimel \daleth\,\! }[/math]
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} [math]\displaystyle{ \mbox{abc} }[/math] [math]\displaystyle{ \mbox{abc} \,\! }[/math]
mixed italics (bad) \mbox{if} n \mbox{is even} [math]\displaystyle{ \mbox{if} n \mbox{is even} }[/math] [math]\displaystyle{ \mbox{if} n \mbox{is even} \,\! }[/math]
mixed italics (good) \mbox{if }n\mbox{ is even} [math]\displaystyle{ \mbox{if }n\mbox{ is even} }[/math] [math]\displaystyle{ \mbox{if }n\mbox{ is even} \,\! }[/math]
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} }[/math] [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} \,\! }[/math]


Alternatives

Formulas in simple text

These can be produced with:

  • the keyboard symbols,
  • the symbols from the virtual keyboard (available by clicking on the button in edit mode)
  • any other Unicode symbols
  • formatting commands like <sub> </sub> (subscript), <sup> </sup> (superscript), '' '' (italic)

The major drawback is that in this way only one-line simple formulas can be produced; multiline formula, fractions, matrices, etc cannot be created using simple text. However, it can prove handy for really small formula or variables/constants/functions definitions, and for people who do not master TeX.

Examples
Source code (in edit mode) Result (in read mode)
x<sup>2</sup> + y<sup>2</sup> = z<sup>2</sup>
x2 + y2 = z2
''π<sub>A</sub>(x) = 1 - (μ<sub>A</sub>(x) + ν<sub>A</sub>(x))''
πA(x) = 1 - (μA(x) + νA(x))
A = ∑<sub>i=1</sub><sup>n</sup> a<sub>i</sub>
A = ∑i=1n ai

Formulas in uploaded images

You may first want to read Help:Upload and Help:Images and files.

The major drawbacks of this approach are:

  • Images are difficult to edit, and need external graphic editor for this sake.
  • Images may scale down, but may not scale up well (unless in vector graphic format).
  • Images files may be unnecessary large.
  • Files can only be uploaded by registered users.

See also