As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Intuitionistic fuzzy approach to bias correction of users' QoE estimation in information service networks: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}} {{issue/title | title = Intuitionistic fuzzy approach to bias correction of users’ QoE estimation in information service networks | shortcut = nifs/31/4/522-531 }} {{issue/author | author = Peter Georgiev | institution = Institute of Mathematics and Informatics, B..."
 
mNo edit summary
Line 12: Line 12:
  | email-before-at = p.georgiev
  | email-before-at = p.georgiev
  | email-after-at  = math.bas.bg
  | email-after-at  = math.bas.bg
  | orcid          = 0000-0003-4871-0434
  | orcid          =
}}
}}
{{issue/author
{{issue/author

Revision as of 09:00, 28 November 2025

shortcut
http://ifigenia.org/wiki/issue:nifs/31/4/522-531
Title of paper: Intuitionistic fuzzy approach to bias correction of users’ QoE estimation in information service networks
Author(s):
Peter Georgiev
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, Sofia-1113, Bulgaria
p.georgiev@math.bas.bg
Stoyan Poryazov     0000-0002-1564-1551
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, Sofia-1113, Bulgaria
stoyan@math.bas.bg
Krassimir Atanassov     0000-0001-5625-071X
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
krat@bas.bg
Velin Andonov     0000-0001-5055-3867
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, Sofia-1113, Bulgaria
velin_andonov@math.bas.bg
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 4, pages 522–531
DOI: https://doi.org/10.7546/nifs.2025.31.4.522-531
Download:  PDF (228  Kb, File info)
Abstract: In the paper, an approach to bias correction of users' Quality of Experience (QoE) estimation in information service networks is described. Numerical opinion scales for degree of confidence of the users and for the user's level of competence (self-estimation) are used. One approach to the correction of the incorrect expert's evaluation is presented. Geometrical interpretations of the corrections of the user's estimations are also presented.
Keywords: Intuitionistic fuzzy set, Quality of service, Quality of experience, Estimation.
AMS Classification: 03E72, 68M10.
References:
  1. Abels, A., Lenaerts, T., Trianni, V. & Nowe, A. (2023). Dealing with expert bias in collective decision-making. Artificial Intelligence, 320, Article ID 103921.
  2. Anon, S. Y., Amin, S. H., & Baki, F. (2024). Third-party reverse logistics selection: A literature review. Logistics, 8(2), Article ID 35.
  3. Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  4. Atanassov, K. (2014). Index Matrices: Towards an Augmented Matrix Calculus. Springer, Cham.
  5. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  6. Atanassova, L., & Dworniczak, P. (2021). Operation Δ as the tool for the de-i-fuzzification procedure and for the correction of the unconscientious experts' evaluations. Notes on Intuitionistic Fuzzy Sets, 27(4), 9–19.
  7. Atanassova, V., & Sotirov, S. (2012). Issue:A new formula for de-i-fuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 18(3), 49–51.
  8. Ban, A., Kacprzyk, J.,& Atanassov, K. (2008). On de-I-fuzzification of intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 61(12), 1535–1540.
  9. Banjanin, M. K., Stojcic, M., Danilovic, D., Curguz, Z., Vasiljevic, M., & PuzIc, G. (2022). Classification and prediction of sustainable quality of experience of telecommunication service users using machine learning models. Sustainability, 14, Article ID 17053.
  10. D´ıaz-Zayas, A., Panizo, L., Banos, J., Cardenas, C., & Dieudonne, M. (2018). QoE Evaluation: The TRIANGLE testbed approach. Wireless Communications and Mobile Computing, 2018, Article ID 6202854.
  11. Dworniczak, P. (2012). A note on the unconscientious experts’ evaluations in the intuitionistic fuzzy environment. Notes on Intuitionistic Fuzzy Sets, 18(3), 23–29.
  12. Dworniczak, P. (2013). Further remarks about the unconscientious experts’ evaluations in the intuitionistic fuzzy environment. Notes on Intuitionistic Fuzzy Sets, 19(1), 27–31.
  13. Dworniczak, P. (2015). A distance based correction of the unconscientious experts' evaluations. Notes on Intuitionistic Fuzzy Sets, 21(3), 5–17.
  14. Dworniczak, P. (2022). The algorithm of correction of the unconscientious experts’ evaluations in the interval-valued intuitionistic fuzzy sets case. Notes on Intuitionistic Fuzzy Sets, 28(3), 293–305.
  15. Fu, S., Li, J., & Wang L. (2025). RA-QoS: A robust autoencoder-based QoS predictor for highly accurate web service QoS prediction. PeerJ Computer Science, 11, Article ID e2928. DOI: 10.7717/peerj-cs.2928.
  16. Pan, X., Ding, S., Zhao, X., Zhang, W., Zuo, D., & Sun, L. (2024). Human error probability evaluation based on reference task using intuitionistic fuzzy theory. Computers & Industrial Engineering, 191, Article ID 110105.
  17. Patrascu, V. (2024). Two de-I-fuzzification procedures for intuitionistic fuzzy information. Notes on Intuitionistic Fuzzy Sets, 30(1), 18–25.
  18. Poryazov, S., Andonov, V., & Saranova, E. (2022). Intuitionistic fuzzy representation of uncertainty in biomedical operations. In: Sotirov, S. S., Pencheva, T., Kacprzyk, J., Atanassov, K. T., Sotirova, E., & Staneva, G. (Eds.). Contemporary Methods in Bioinformatics and Biomedicine and Their Applications. Lecture Notes in Networks and Systems, Volume 374, Springer, Cham, Switzerland, pp. 269–278.
  19. Poryazov, S., Andonov, V., & Saranova, E. (2022). Three intuitionistic fuzzy estimations of uncertainty in service compositions. In: Uncertainty and Imprecision in Decision Making and Decision Support: New Advances, Challenges, and Perspectives; IWIFSGN BOS/SOR 2020. Lecture Notes in Networks and Systems, Volume 338. Springer, Cham, Switzerland, pp. 72–84.
  20. Poryazov, S., Andonov, V., Saranova, E., & Atanassov, K. (2022). Two Approaches to the traffic quality intuitionistic fuzzy estimation of service compositions. Mathematics, 10(23), Article ID 4439.
  21. Recommendation ITU-T E.800. (09/2008). Definitions of terms related to quality of service. Available online at: https://handle.itu.int/11.1002/1000/9524
  22. Recommendation ITU-T P.800.1. (07/2016). Methods for objective and subjective assessment of speech and video quality. Mean opinion score (MOS) terminology. Available online at: https://handle.itu.int/11.1002/1000/12972.
  23. Recommendation ITU-T P.910. (10/2023). Subjective video quality assessment methods for multimedia applications. Available online at: https://handle.itu.int/11.1002/1000/15697.
  24. Streijl, R., Winkler, S. & Hands, D. (2016). Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives. Multimedia Systems, 22(2), 213–227.
  25. Theodorakopoulos, L., Theodoropoulou, A., & Halkiopoulos, C. (2025). Cognitive bias mitigation in executive decision-making: A data-driven approach integrating big data analytics, AI, and explainable systems. Electronics, 14, Article ID 3930.
  26. Vassilev, P. (2010). On reassessment of expert evaluations in the case of intuitionistic fuzziness. Advanced Studies in Contemporary Mathematics, 20(4), 569–574.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.