Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at nifs.journal@gmail.com

Call for Papers for the 27th International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 5–6 July 2024, Burgas, Bulgaria • EXTENDED DEADLINE for submissions: 15 APRIL 2024.

Issue:Two de-I-fuzzification procedures for intuitionistic fuzzy information

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/1/18-25
Title of paper: Two de-I-fuzzification procedures for intuitionistic fuzzy information
Author(s):
Vasile Patrascu
Research Center in Electrical Engineering, Electronics and Information Technology, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
patrascu.v@gmail.com
Presented at: Proceedings of the 27th International Conference on Intuitionistic Fuzzy Sets, 5–6 July 2024, Burgas, Bulgaria
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 1, pages 18–25
DOI: https://doi.org/10.7546/nifs.2024.30.1.18-25
Download:  PDF (193  Kb, Info)
Abstract: In this paper, two procedures are proposed that transform intuitionistic fuzzy information into fuzzy information. Using the results obtained with the de-I-fuzzification procedures, formulas for intuitionistic fuzzy entropy are constructed.
Keywords: Fuzzy information, Intuitionistic fuzzy information, De-I-fuzzification, Entropy.
AMS Classification: 03E72.
References:
  1. Ansari, A. Q., Philip, J., Siddiqui, S. A., & Alvi, J. A. (2010). Fuzzification of Intuitionistic Fuzzy Sets. International Journal of Computational Cognition, 8(3), 90–91.
  2. Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  3. Atanassova, L. C. (2023). Three de-intuitionistic fuzzification procedures over circular intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 29(3), 292–297.
  4. Atanassova, V., & Sotirov, S. (2012). A new formula for de-i-fuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 18(3), 49–61.
  5. Ban, A., Kacprzyk, J., & Atanassov, K. (2008). On de-I-fuzzification of intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 61(12), 1535–1540.
  6. De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20, 301–312.
  7. Kaufmann, A. (1975). Introduction to the Theory of Fuzzy Subsets, Vol. I. Academic Press, New York.
  8. Kosko, B. (1986). Fuzzy entropy and conditioning. Information Sciences, 40, 165–174.
  9. Patrascu, V. (2012). Fuzzy Membership Function Construction Based on Multi-Valued Evaluation. Uncertainty Modeling in Knowledge Engineering and Decision Making, World Scientific Press, 756–761.
  10. Patrascu. V. (2018). Shannon entropy for intuitionistic fuzzy information. Preprint. ArXiV. https://doi.org/10.48550/arXiv.1807.01747.
  11. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
  12. Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118, 467–477.
  13. Van Leekwijck, W., & Kerre. E. E. (1999). Defuzzification: Criteria and classification. Fuzzy Sets and Systems, 108(2), 159–178.
  14. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.