Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at

Call for Papers for the 26th International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 26–27 June 2023 • Deadline for submission: 26 March 2023.

Martingale convergence theorem for a conditional intuitionistic fuzzy mean value

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Title of paper: Martingale convergence theorem for a conditional intuitionistic fuzzy mean value
Katarína Čunderlíková
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 2, pages 94–102
Download: Download-icon.png PDF (205  Kb, Info)
Abstract: The aim of this contribution is to show a representation of a conditional intuitionistic fuzzy mean value of intuitionistic fuzzy observables by a conditional mean value of random variables. We formulate a martingale convergence theorem for a conditional intuitionistic fuzzy mean value, too.
Keywords: Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Product, Conditional intuitionistic fuzzy mean value, Martingale convergence theorem.
AMS Classification: 03B52, 60A86, 60A10, 60G48.
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Repr. Int. J. Bioautomation, 20, S1–S6.
  2. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets, Springer, Berlin.
  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Physica Verlag, New York.
  4. Čunderlíková, K. (2021). Conditional intuitionistic fuzzy mean value. Axioms, 10(2), Article No. 97.
  5. Čunderlíková, K. (2020). A note on mean value and dispersion of intuitionistic fuzzy events. Notes on Intuitionistic Fuzzy Sets, 26 (4), 1–8.
  6. Lendelová, K. (2006). Conditional IF-probability. Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, 37, Springer, Berlin, Heidelberg, 275–283.
  7. Lendelová, K., & Rieˇcan, B. (2004). Weak law of large numbers for IF-events. Current Issues in Data and Knowledge Engineering, Bernard De Baets et al. eds., EXIT, Warszawa, 309–314.
  8. Riečan, B. (2012). Analysis of fuzzy logic models. Intelligent systems (V. Koleshko ed.), INTECH, 219–244.
  9. Riečan, B. (2006). On the probability and random variables on IF events. Applied Artifical Intelligence, Proc. 7th FLINS Conf. Genova, D. Ruan et al. eds., 138–145.
  10. Riečan, B., & Neubrunn, T. (1997). Integral, Measure, and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
  11. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–358.
  12. Zadeh, L. A. (1968). Probability measures on fuzzy sets. Journal of Mathematical Analysis and Applications, 23, 421–427.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.