As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:To what extent can intuitionistic fuzzy options be ranked?

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/3/193-202
Title of paper: To what extent can intuitionistic fuzzy options be ranked?
Author(s):
Eulalia Szmidt
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Paweł Bujnowski
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
pbujno@ibspan.waw.pl
Presented at: 25th ICIFS, Sofia, 9—10 September 2022
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 3, pages 193–202
DOI: https://doi.org/10.7546/nifs.2022.28.3.193-202
Download:  PDF (118  Kb, File info)
Abstract: In this paper, we continue our considerations concerning the ranking of intuitionistic fuzzy alternatives (options, variants, ...). We complete our previous considerations by showing in another way why the method proposed by us gives proper results. We stress when the method should be applied and emphasize its transparency.
Keywords: Intuitionistic fuzzy sets, Ranking intuitionistic fuzzy alternatives, Conditions.
AMS Classification: 03E72, 34Gxx.
References:
  1. Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR Session. Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  2. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag, Heidelberg.
  4. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  5. Atanassova, V. (2004). Strategies for Decision Making in the Conditions of Intuitionistic Fuzziness. Int. Conf. 8th Fuzzy Days, Dortmund, Germany, 263–269.
  6. Bujnowski, P., Szmidt, E., & Kacprzyk, J. (2014). Intuitionistic fuzzy decision trees – a new approach. In: Rutkowski, L. et al. (eds.) Artificial Intelligence and Soft Computing, Part I. Springer, Switzerland, 181–192.
  7. Bustince, H., Mohedano, V., Barrenechea, E., & Pagola, M. (2006). An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. IPMU’2006, 2383–2390.
  8. Guo, K. (2014). Amount of information and attitudinal-base method for ranking Atanassov’s intuitionistic fuzzy values. IEEE Transactions on Fuzzy Systems, 22(1), 177–188.
  9. Maggiora, G., & Szmidt, E. (2021). An Intuitionistic Fuzzy Set Analysis of Drug-Target Interactions. MATCH Communications in Mathematical and in Computer Chemistry, 85(3), 465–498.
  10. Roeva, O., & Michalikova, A. (2013). Generalized net model of intuitionistic fuzzy logic control of genetic algorithm parameters. Notes on Intuitionistic Fuzzy Sets, 19(2), 71–76.
  11. Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets. Springer.
  12. Szmidt, E., & Baldwin, J. (2006) Intuitionistic Fuzzy Set Functions, Mass Assignment Theory, Possibility Theory and Histograms. 2006 IEEE World Congress on Computational Intelligence, 237–243.
  13. Szmidt, E., & Kacprzyk, J. (1997). On measuring distances between intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(4), 1–13.
  14. Szmidt, E., & Kacprzyk, J. (1998). Group Decision Making under Intuitionistic Fuzzy Preference Relations. IPMU’98, 172–178.
  15. Szmidt, E., & Kacprzyk, J. (1998). Applications of Intuitionistic Fuzzy Sets in Decision Making. EUSFLAT’99, 150–158.
  16. Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505–518.
  17. Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467–477.
  18. Szmidt, E., & Kacprzyk, J. (2001). Analysis of Consensus under Intuitionistic Fuzzy Preferences. Proc. Int. Conf. in Fuzzy Logic and Technology. Leicester, UK, 79–82.
  19. Szmidt, E., & Kacprzyk, J. (2002). Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. Proc. IPMU 2002, Annecy, France, 1859–1865.
  20. Szmidt, E., & Kacprzyk, J. (2002). Evaluation of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Sets. Proc. 1st Int. IEEE Symposium: Intelligent Systems, Varna, Bulgaria, 166–170.
  21. Szmidt, E., & Kacprzyk, J. (2005). A New Concept of a Similarity Measure for Intuitionistic Fuzzy Sets and its Use in Group Decision Making. In: Torra, V., Narukawa, Y., & Miyamoto, S. (eds.) Modelling Decisions for Artificial Intelligence. Lecture Notes on Artificial Intelligence, Vol. 3558, 272–282. Springer.
  22. Szmidt, E., & Kacprzyk, J. (2005). Distances Between Intuitionistic Fuzzy Sets and their Applications in Reasoning. In: Halgamuge, K. S., & Wang, L. (eds.) Computational Intelligence for Modelling and Prediction. Studies in Computational Intelligence, Vol. 2, 101–116. Springer.
  23. Szmidt, E., & Kacprzyk, J. (2006). Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. Proc. 3rd Int. IEEE Conf. Intelligent Systems IS’06, London, 716–721.
  24. Szmidt, E., & Kacprzyk, J. (2006). An Application of Intuitionistic Fuzzy Set Similarity Measures to a Multi-criteria Decision Making Problem. Proc. ICAISC 2006, Lecture Notes on Artificial Intelligence, Vol. 4029, 314–323. Springer-Verlag.
  25. Szmidt, E., & Kacprzyk, J. (2007). Some problems with entropy measures for the Atanassov intuitionistic fuzzy sets. Applications of Fuzzy Sets Theory. Lecture Notes on Artificial Intelligence, Vol. 4578, 291–297. Springer-Verlag.
  26. Szmidt, E., & Kacprzyk, J. (2007). A New Similarity Measure for Intuitionistic Fuzzy Sets: Straightforward Approaches May Not Work. Proc. 2007 IEEE Conference on Fuzzy Systems, 481–486.
  27. Szmidt, E., & Kacprzyk, J. (2009). Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives. In: Rakus-Andersson, E., Yager, R., Ichalkaranje, N., & Jain, L. C. (eds.) Recent Advances in Decision Making, Studies in Computational Intelligence, Vol. 222, 7–19. Springer-Verlag.
  28. Szmidt, E., & Kacprzyk, J. (2009). Ranking of Intuitionistic Fuzzy Alternatives in a Multi-criteria Decision Making Problem. Proc. NAFIPS 2009, Cincinnati, USA (14.06.2009–17.06.2009). IEEE.
  29. Szmidt, E., & Kacprzyk, J. (2011). The Spearman and Kendall rank correlation coefficients between intuitionistic fuzzy sets. Proc. 7th conf. European Society for Fuzzy Logic and Technology (EUSFLAT), Aix-Les-Bains, France, Antantic Press, 521–528.
  30. Szmidt, E., & Kacprzyk, J. (2011). Intuitionistic fuzzy sets – Two and three term representations in the context of a Hausdorff distance. Acta Universitatis Matthiae Belii, Series Mathematics, 19, 53–62.
  31. Szmidt, E., & Kacprzyk, J. (2015). Two and three term representations of intuitionistic fuzzy sets: Some conceptual and analytic aspects. IEEE Int. Conf. on Fuzzy Systems FUZZ-IEEE 2015, 1–8.
  32. Szmidt, E., & Kacprzyk, J. (2017). A Perspective on Differences Between Atanassov’s Intuitionistic Fuzzy Sets and Interval-Valued Fuzzy Sets. In: Torra, V., Dahlbom, A., & Narukawa, Y. (eds.) Fuzzy Sets, Rough Sets, Multisets and Clustering (Eds.: Vicenc Torra, Anders Dahlbom, Yasuo Narukawa). Studies in Computational Intelligence, Vol. 671, 221–237. Springer.
  33. Szmidt, E., & Kacprzyk, J. (2022). Atanassov’s Intuitionistic Fuzzy Sets Demystified. In: Ciucci et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, Vol. 1601. Springer, Cham.
  34. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2020). Attribute Selection for Sets of Data Expressed by Intuitionistic Fuzzy Sets. Proc. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 1–7.
  35. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2021). Three term attribute description of Atanassov’s Intuitionistic Fuzzy Sets as a basis of attribute selection. Proc. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, 1-6,
  36. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2022). Ranking of Alternatives Described by Atanassov’s Intuitionistic Fuzzy Sets – A Critical Review. Proc. 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua, Italy, 1–7.
  37. Szmidt, E., & Kukier, M. (2006). Classification of Imbalanced and Overlapping Classes using Intuitionistic Fuzzy Sets. Proc. 3rd International IEEE Conference on Intelligent Systems IS’06, London, 722–727.
  38. Szmidt, E., & Kukier, M. (2008). A New Approach to Classification of Imbalanced Classes via Atanassov’s Intuitionistic Fuzzy Sets. In: Wang, H.-F. (ed.) Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery. Idea Group, 85–101.
  39. Szmidt, E., & Kukier, M. (2008). Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Chountas, P., Petrounias, P., & Kacprzyk, J. (eds.) Intelligent Techniques and Tools for Novel System Architectures, 455–471. Springer, Berlin.
  40. Xing, Z., Xiong, W., & Liu, H. (2018). A Euclidean approach for ranking intuitionistic fuzzy values. IEEE Transactions on Fuzzy Systems, 26(1), 353–365.
  41. Xu, Z. (2007). Intuitionistic preference relations and their application in group decision making. Information Sciences, 177, 2363–2379.
  42. Zhang, X., & Xu, Z. (2012). A new method of ranking intuitionistic fuzzy values and its applications in multi-attribute decision making. Fuzzy Optimization and Decision Making, 11(2), 135–146.
  43. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.