As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: 22nd International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets • 18 October 2024 • Warsaw, Poland / online (hybrid mode).
Deadline for submissions: 1 October 2024.

Issue:Software implementation of intuitionistic fuzzy sets and some operators

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/1/51-85
Title of paper: Software implementation of intuitionistic fuzzy sets and some operators
Author(s):
Evgeniy Marinov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
Gate Institute, Sofia University “St. Kliment Ohridski”, 125 Tsarigradsko Shose Blvd., Bl. 2, 1113 Sofia, Bulgaria
evgeniy.iv.marinov@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 1, pages 51–85
DOI: https://doi.org/10.7546/nifs.2022.28.1.51-85
Download:  PDF (738  Kb, File info)
Abstract: In this paper, we present a software implementation of the framework of Intuitionistic Fuzzy Sets (IFSs). The presented implementation allows the user to interactively shape an IFS, to compute, plot and visualize various of operators for IFS and allows for the modeling of real world problems.
Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy interpretational triangle, Python, Software implementation.
AMS Classification: 03E72
References:
  1. Angelova, N. (2021). IFSTOOL – Software for Intuitionistic Fuzzy Sets Necessity, Possibility and Circle Operators. In: Atanassov, K. et al. (eds) Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives. IWIFSGN 2018. Advances in Intelligent Systems and Computing, 1081, 76–81.
  2. Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal Bioautomation, 2016, 20(S1), S1–S6.
  3. Atanassov, K. (1989). Geometrical Interpretation of the Elements of the Intuitionistic Fuzzy Objects. Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1989, Preprint IM-MFAIS-1-89. Reprinted: International Journal Bioautomation, 2016, 20(S1), S27–S42.
  4. Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag, Heidelberg.
  5. Atanassov, K. (2004). On the modal operators defined over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 10(1), 7–12.
  6. Atanassov, K. (2005). On one type of intuitionistic fuzzy modal operators. Notes on Intuitionistic Fuzzy Sets, 11(5), 24–28.
  7. Atanassov, K. (2008). The most general form of one type of intuitionistic fuzzy modal operators. Part 2. Notes on Intuitionistic Fuzzy Sets, 14(1), 27–32.
  8. Atanassov, K. (2010). On two topological operators over intuitionistic fuzzy sets. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 8, 1–7.
  9. Atanassov K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer-Verlag, Berlin.
  10. Atanassov, K., & Ban, A. (2000). On an operator over intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 53(5), 39–42.
  11. Atanassova, V., (2015). Interpretation in the Intuitionistic Fuzzy Triangle of the Results, Obtained by the InterCriteria Analysis. Proc. of 16th World Congress of the International Fuzzy Systems Association (IFSA), 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30 June – 3 July 2015, Gijon, Spain, 1369–1374.
  12. Atanassova, V., Vardeva, I., Sotirova, E., & Doukovska, L. (2016). Traversing and ranking of elements of an intuitionistic fuzzy set in the intuitionistic fuzzy interpretation triange. In: Novel Developments in Uncertainty Representation and Processing, Vol. 401, Advances in Intelligent Systems and Computing, Springer, 161–174.
  13. Birkhoff, G. (1967). Lattice Theory. American Mathematical Society, Providence, Rhode Island.
  14. Goguen, J. A. (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18, 145–174.
  15. Marinov, E. (2014). π-ordering and index of indeterminacy for intuitionistic fuzzy sets. Proc. of 12th Int. Workshop on IFS and GN, IWIFSGN’13, Warsaw, Oct. 2013. “Modern Approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Volume I: Foundations”, IBS PAN-SRI PAS, Warsaw, 129–138.
  16. Marinov, E., & Atanassov, K. (2020). Partially Continuous Pretopological and Topological Operators for Intuitionistic Fuzzy Sets. Iranian Journal of Fuzzy Systems, 17(2), 1–15.
  17. Marinov, E., Tsvetkov, R., & Vassilev, P. (2016). Intuitionistic Fuzzy Inclusion Indicator of Intuitionistic Fuzzy Sets. In: Angelov P., Sotirov S. (eds) Imprecision and Uncertainty in Information Representation and Processing. Studies in Fuzziness and Soft Computing, 332, 41–53.
  18. Mavrov, D., Radeva, I., Atanassov, K., Doukovska, L., & Kalaykov, I. (2015). InterCriteria Software Design: Graphic Interpretation within the Intuitionistic Fuzzy Triangle. Proceedings of the 5th International Symposium on Business Modeling and Software Design (BMSD), 6–8 July 2015, 279–283.
  19. Vassilev, P. (2010). A Note on the Extended Modal Operator Gα,β. Notes on Intuitionistic Fuzzy Sets, 16(2), 12–15.
  20. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.