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1 Introduction

The Intuitionistic Fuzzy Sets (IFSs) were introduced in 1983 in [2]. Its theory was described in
details in [4,9], but by the moment there is only one attempt for software implementation of some
IFS-operations and operators [1].

The proposed in this paper software implementation for visualization and computation of
IFSs, and operations and operators over those, can be applied in the modeling of real world
problems. We used Python as programming language. In addition to that, we implement a
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functionality for serialization of the IFSs in json files. The serialized IFSs can have properties,
such as size of the circle in the triangle representation, colour, etc.

2 Short remarks on IFSs

Since the introduction of fuzzy sets by Zadeh [20] there have been a number of generalizations.
Most of them consist of replacing the range [0, 1] by more general algebraic structures satisfying
the axioms for a lattice (cf. Birkhoff [13]) — they are called L-fuzzy sets (cf. Goguen [14]).

A very popular extension of fuzzy sets is the Atanassov’s generalization - intuitionistic fuzzy
set (IFS) (cf. Atanassov [2, 4, 9]), where the corresponding lattice takes the natural form of a
triangular representation (described in the next section). In addition to the membership function
of a FS, there is another function, expressing a notion of non-membership degree with the same
domain X and range [0, 1], for which the sum of the membership and non-membership degrees
should never exceed 1. That is, in the framework of IFSs we have an additional degree, expressing
the lack of knowledge/information. This makes the theory invaluable to extend the uncertainty of
the limited level of crisp and even fuzzy precision in real world situations and preferences.

In this section, following [4, 9], we will give the basic concepts form IFS theory that will
be objects of discussion in the subsequent sections, which will be devoted to the software
implementation of these basic concepts.

2.1 Definition of an IFS

Let a (crisp) set X be fixed and let A be a fixed symbol.
An IFS A* in X is an object of the following form

A" = {(z, pa(x), va(z))|e € X}, (D

where functions p14 : X — [0,1] and v4 : X — [0, 1] define the degree of membership and the
degree of non-membership of the element x € X to the IFS A*, respectively, and for every x € X

0 < pa(w) +valz) < 1. ()

Obviously, every ordinary fuzzy set has the form

{(z, pa(z), 1 — pa(z))|z € X}.
If
ma(r) =1— pa(x) —va(x), 3)
then 74 () is the degree of non-determinacy (uncertainty) of the membership of element x € X

to set A. In the case of ordinary fuzzy sets, m4(x) = 0 for every z € X.
Three very important notions to be used throughout the text are the following:

O%(or O*(X)) :={{(z,0,1) | x € X}, 4)
Ex(or E*(X)) :={(z,1,0) | z € X}, 5)
Uyx(orU*(X)) :={(x,0,0) | z € X}, (6)
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Let us recall two of the main operators, introduced by Atanassov in [2], called modal
operators. Necessity and possibility operators (denoted by [ and <, respectively) applied on
an intuitionistic fuzzy set A € I F'S(X) have been defined as:

OA = {(z, pa(2),1 — pa(z))|z € X}, Q)
QA ={{z,1 —v(x),va(x))|z € X} (8)

From the above definition it is evident that
*x: [FS(X) — FS(X),

where * is the prefix operator » € {(1, >}, operating on the class of intuitionistic fuzzy sets.

2.2 Geometrical interpretations of an IFS

There are several geometrical interpretations of the IFSs (cf. Atanassov [9]), the earliest of which
in the literature is the preprint from 1989 [3]. The three most relevant of them are discussed below
(Figs. 1,2, 4).

Figure 1. Standard geometrical representation of the membership degree ;14 and the
non-membership degree v4.

Figure 2. Modified geometrical representation of ;14 and 1 — v/4.
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Therefore, to every element € X we can map a unit segment of the form:

| }u(x)

pa(r)

x
On the other hand, the situation in Fig. 3 is impossible.

Let a universe X be given and let us consider the figure F' in the Euclidean plane with
a Cartesian coordinate system (see Fig. 4). Let us call the triangle F' “IFS-interpretational
triangle”. If A € IFS(X) is a fixed intuitionistic fuzzy set in the universe X, then we can
construct a function f4 : X — F such that if x € X, then

fa(x) = (pa(z),va(z)) € F. ©

And since 0 < py(z) + va(x) < 1(2), therefore the range of the function f4 is indeed a subset
of F.

2

X

Figure 3. Representation of an impossible situation for p14 and 1 — /4.

Note that if there exist two different elements =1,z € X, z1 # x9, for which p4(z1) =
pa(z2) and va(zy) = va(zy) with respect to some set A € IFS(X), then fa(z1) = fa(xa).

O.1) ox
e O L

o (z | f:l (13)

00  pat) (10

Figure 4. Triangular representation of a point from X in F'.
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2.3 Main operations on IFSs and their geometrical presentations

In this section, we give the most common operations on IFSs and their geometrical interpretations.

Following [2,4,9], for every two IFSs A and B the following relations and operations can be
defined (everywhere below “iff”” means “if and only if”’). They are analogous of the standard set
theoretical operations of inclusion (cf. [9]):

A C Biff (Vo € X)(pa(x) < up(x) & va(z) > vp(z)) (10)
ADBiff BC A (11)
A=Biff (Vo € X)(ua(z) = up(x) & va(z) = vg(x)) (12)

Let us now give the standard operations of intersection, union, as shown on Fig. 5 and Fig. 6
which are specific for the IFSs (cf. [9]):

AN B = {{z,min(pa(x), up(x)), max(va(z), ve(z)))|z € X} (13)
AU B = {{z,max(pua(z), up(x)), min(va(z), vg(x)))|z € X} (14)

If Aand B € IFS(X), then a function fanp assigns to z € X, a point fanp(x) € F with
coordinates

(min(pa(z), pp(w)), max(va(z), vs(y)))-

Jan(z) = fa(2)

,,,,,,,,,,,

(a) (b) (c)

Figure 5. Representation of the intersection operation N between A and B € I F'S(X).

If A and B are two IFSs over X, then a function f4p assignsto x € X, apoint fa,p(x) € F
with coordinates

(max(pea(x), pp(r)), min(va(z), ve(y)))

faus(z) = fB(2)

77777777777

() (b) ©)

Figure 6. Representation of the union operation U between A and B € [FS(X).
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3 Standard topological operators on IFSs

Following [9], we introduce two topological operators. For every IFS A,
C(A) = {(z,K,L)|z € X},
where

K =sup pa(y)
yeX

L = inf v4(y)

and
Z(A) = {{x,k, )|z € X},

where

k= inf pa(y),

yer

| = supva(y).
yerR

(15)

(16)

(17)

(18)

(19)

(20)

The following operators are defined in Atanassov [9], as extensions of the two topological

operators C' and I:

Cu(A) = {{z, K, min(1 — K,va(z)))|z € X};
Co(A) = {(z, pa(z), L) |z € X};

Lu(A) = {(z, k,va(z))|r € X};

Z,(A) = {{z,min(1 — I, ua(x)), )|z € X},

where K, L, k, [ have the forms (16), (17), (19), (20), respectively.

21)
(22)
(23)
(24)

The geometrical interpretations of these operators applied on the IFS A in Fig. 7 are shown in

Fig. 8 (a) and (b) and Fig. 9 (a) and (b).

(0,1)

fA?a)
fa(e),

f Ao(b)

(0,0) (1,0)

Figure 7. Example of an IFS on which topological operators will be applied.

56



(a) (b)

fz.4)(c)—
fr,0a)(b)—

(0,0) (1,0) (0,0) (1,0)

(a) (b)

Figure 9. Extended interior operators Z,, and Z,,.

0 Fa(es) fe,a)(@2) = fe,(a)(@s)
fA(:’L‘2) /
. : fa(zs) oo (@) = fo (@)
fales) N Fale) = e, oa(e)
(0,0) i (1,0)

Figure 10. Example of C,,.
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Another example of the action of operator C,,(A) is illustrated in Fig. 10. It is obvious from
Fig. 10 that the operator C,, transforms points x5 and x5 to one point on the hypotenuse. More
generally, all points from the hatching trapezoid can be transformed to point A in Fig. 11 (a).
Similar is the situation in Fig. 11 (b), where all points from the hatching trapezoid can be
transformed to point B by the operator Z,.

In [8], the two new topological operators C;; and Z; are introduced as

Ci(A) = {{z,min(K, 1 — va(z)), min(l — K,va(v)))|z € E}; (25)
Z:(A) = {{x,min(1 — I, pa(x)), min(l, 1 — pa(x)))|x € E}, (26)

where K, L, k, [ were already defined.

(0,1) (0,1)

(0,0) (1,0) (0,0) (1,0)

(a) (b)

Figure 11. High level representation of the operators C, and Z,,.

The geometrical interpretations of the new operators applied on the IFS A having the form in

Fig. 7 are given in Fig. 12 (a) and (b).

(0,1) (0,1)

(a) (b)

Figure 12. Extended closure C;; and interior Z;; operators applied on the IFS from Fig. 7.

58



In [10], Atanassov and Ban introduced the “weight-center operator” over a given IFS A by:

Z;(MA(Z/) Z;{VA(Z/)
wWi4) = <x, yfard(X) 7ycecw“d(X) > lre X, @D

where card(X) is the number of the elements of a finite set X. For the continuous case, the
“summation” may be replaced by integration over X.

3.1 Extended modal operators

Following Atanassov [6, 9], we construct a series of operators in the next subsections. Some
of the extended modal operators will be defined in a more suitable way to be considered in the
framework of the topological neighbourhoods and their properties. The change is a trivial linear
transformation of the constants « and 3, so that if («, 5) = (0, 0) the operator will be the identity.

3.1.1 Operators D, and F, 3

The next operator represents both operators [J from (7) and ) from (8). Let o € [0, 1] be a fixed
real number. Given an IFS A, we define an operator D,, as follows:

Do(A) = {{x, pa(x) + ama(x),va(z) + (1 — a).7wa(z))|z € X} (28)

From this definition it follows that D, (A) is a fuzzy set, because:
pa(z) + ama(z) +va(z) + (1 — a)ma(x) = pa(z) + va(z) + ma(z) = 1.

To every point © € X the operator fp_(4) assigns a point of the segment between fra(x)
and foa(x) in the triangle F' from Fig. 4 depending on the value of the argument o« € [0, 1]
(see Fig. 13). As in the case of some of the above operations, this construction needs auxiliary
elements which are shown in Fig. 13. As we noted above, the operator D,, is an extension of the
operators [J and <, but it can be extended even further.

Let o, € [0,1] and o + 5 < 1. Define (see [9]) the operator F, s, for the IFS A, by

Fap(d) = Uz, pa(z) + ama(2), va(z) + fra(z))e € X} (29)
1 foa(x)
| Jpa(2)
,,,,,,, i foa(z)
Fal)

Figure 13. Extended modal operator D, (A).
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To every point z € X the operator fr, () assigns a point of the triangle with vertices fa(z),
foa(z) and foa(x), depending on the value of the arguments «, 5 € [0, 1] for whicha + 3 < 1
(see Fig. 14).

Figure 14. Extended modal operators F, g and D,

A feature that both operators share, together with the first two modal operators, is that each
of them changes the degree of uncertainty. While the first three operators make this degree equal
to zero, the operator F, 3 only decreases its value, increasing the degrees of membership and
non-membership of the IFS’ elements.

3.1.2 Operator G, g

Let o, § € [0,1]. We are going to change the operator defined by Atanassov (cf. [9])

Gop(A) = {{z, apa(z), fra(z)) |© € X}

through the substitutions:
a—=(l—a)and 5 — (1 — )

That way the above extended modal operator will look like,

Gap(A) = {(z, (1 = )pa(x), (1 = Blva(z)) [z € X} (30)

We made this substitution in order to start at A for (o, 5) = (0,0) and gradually to reach U%.
Obviously, G o(A) = Aand G, 1(A) = Uk, where U is defined by (6).

The operator f assigns a point fg, () in the rectangle with vertex f4(x) and vertices with
coordinates, (pryfa(z),0), (0, prafa(x)) and (0,0), where pr;p is the i-th projection (i = 1,2)
of the point p, to every point z € X, depending on the value of the arguments «, 5 € [0, 1]

Let n > 1 be an integer and o, 5; € [0,1],7 = 1,...,n. Then, we can construct the IFS

Gon (- + - (G pa (A)) - )
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{(z, palz HOWA meeE} gn ﬁﬁ.(A).

In [19], Vassilev studied some properties of this IFS.

Figure 15. Extended modal operator G, 3

3.1.3 Operators H, g, Hy, gy T a,p,and T, 5

We state here four other extended modal operators over an IFS A, given the fixed real numbers a,

G € [0,1] (see Atanassov [9]), as

Hop(A) = {(z, apa(x), va(x) + fra(x))| z € X}
H; 5(A) = {{z,apa(z),va(@) + B(1 — apa(z) — va(e))) |z € X};
Jos(A) = {(z, pa(z) + ama(z), Bra(2)) |z € X}

Ja 5(A) = {(z, pa(x) + (1 = pa(z) = Bra(x)), Bra(z)) |z € X};

In the above definitions for H, 3 and H}, ; we make the substitution: o — (1 — «) and for
Ja,s and J;; 5 we make the substitution: 3 — (1 — 3). That way we get the last four extended

modal operators:

ap(A) = {(z, (1 = a)pa(r), va(r) + bra(z))| 2 € X};

ap(A) = {2, (1 = a)pa(r), valr) + 61 = (1 = a)pa(z) —va(@))) [z € X};
Jaﬁ(A) = {(&, pa(e) + ama(z), (1 = Plva(z)) [z € X};

wp(A) = {2, pa(r) + a(l = pa(e) = (1 = Bva(x)), (1 = Blraz)) |z € X};

We made those substitutions because we want to start the mapping from (u4,v4) at

(o, B) = {0,0).

The operator f3,, ,(4) assigns to every point x € X a point f_ ,(a)(x) of the rectangle with

vertices with coordinates (0, pra f4(z)), (0, pra foa(z)) and vertices fra(x) and f4(x), depending
on the value of the parameters «, 5 € [0, 1] (see Fig. 16 (a)).
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The operator f7 () assigns to every point x € X a point f .)(z) of the rectangle
with vertices with coordinates (pryfoa(z),0), (pr1fa(x),0) and vertices fa(z) and foa(x),
depending on the value of the parameters «, 5 € [0, 1] (see Fig. 16 (b)).

f”a,ﬁ(z‘l) (5’7)

f Ja,5(A )
(a) (b)
Figure 16. Extended operators H, g and H, s

The operator f%zﬁ( 4) assigns to every point x € X a point f"HZ,a( 4)(z) from the figure with
vertices with coordinates (0, prafa(z)) and (0, 1) and vertices foa(z) and f4(x), depending on
the value of the parameters «, § € [0, 1] (see Fig. 17 (a)).

The operator f Tz 5(A) assigns to every point x € E a point f T 5 4)(z) from the figure with
vertices with coordinates (1,0) and (pry fa(z),0) and vertices f4(x) and foa(x), depending on
the value of the parameters «, 8 € [0, 1] (see Fig. 17 (b)).

Frz (@)

(a) (b)
Figure 17. Extended operators H;, s (@) and j;‘y 5 (b)

In this paper we have stated the definition, theory, applications and main properties of IFSs,
as introduced by Atanassov in 1983 [2,4,9]. Many of the properties and operators presented here
are used throughout the presented software implementation. And the (pre)topological operators
introduced in [16] are related to the extended topological and extended modal (cf. [5,7]) operators.
The pretopological (preinterior and preclosure) operators are defined as follows:

For «, 3,74, 75 € [0, 1] we define the preinterior operator

VAN IFS()% — IFS(X),



such that

0 if 0 < pia(z) < Ya-ox
) = 8 @)~ o) b 700 < pale) <o
pa(x) ifa<ps(zr) <1

va(z) if B <wa(z) <
For a, 8,74, 75 € [0, 1] we define the preclosure operator
Comls  IFS(X) — IFS(X),

such that
0 if 0 <wva(r) < Yo

ycm,m(A)(x) =9 7—alz) —a)+a ify,a <vy(z) <a

via, B
va(x) ifa<wvy(r)<l1

/,LC"/a,’Y[-} (A)(J]) =

via,B

min((1 = yg)na(z) + By, 1 = vgrens () 0 < pa(e) < B
pal(z) if B < pa(r) <1

4 Software implementation of the operators for IFS

(1)

(33)

In this section, we explain how the software implementation can be used. It consists of open

source codes that can be freely used and further customized by the users. The IFSs and their

operators have been modelled in the programming language Python and visualized through the

library matplotlib.

We are going to briefly describe the most important python scripts and definition of object

and their main functionalities.

4.1 Universal set

The script universal_set.py consists of the definition of the main object describing an IFS and

main operations for their mutation and consistency checks.

Add new object to the Universe

Saving the universe in CSV format

Set universe to the object

Get the lenght of Universe

Check if the Universe is empty
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matplotlib

L #HE#HE Qeeeereeee @reEEEEEEEEeEee @RRRERQEREEREEREEEQEA
2 #H## @ERRERQAERQRQRE universal_set.py @RQEREREEREREEREEEREQE
3 #E#E QReeREeREE @ReEEEErErEQe@ @REQREQAEEEEEEEQE

4

5 class UniversalSet (object)

(words_set=None) :
def __eq (self, other):
def _ len_ (self):
def __getitem  (self, idx):
def to_csv(self, file_name, index=True) :
def indices (self) :
def indices_generator (self):
def add(self, words_set, return_flag=None):
def _add(self, words):
def get_index (self, word, default=None) :
def get_word(self, idx, default=None) :
def characteristic_indices (self, words):
def check_consistancy(self):
def length(self):
def empty (self):
def set_universe (self,
index_to_words=[],
words_to_index={},
rhs=None,
copy_op=lambda x: Xx):
"""Sets the universal set through the corresponding index_to_words
(The words of the universe have to be ordered and therefore they

posses an index in this ordering) or words_to_index.

Attributes

index_to_words : list with the words, occuring by their corresponding order
words_to_index : dictionary with the words as keys and their corresponding
values

copy_op : Operation that determines how the universal set to be stored.

It can be stored as a hard/deep/ copy into the member variables of self
/the current class/ or the corresponding member variable can point to the

universal set from outside.

wnwn

In the next script the LATTICE structure of the IFSs is taken into account and two main

orderings between IFSs are defined as posets (partially ordered sets). The main operations for
posets: the standard one and the 7-ordering as described in [15].

e Infimum and Supremum of a subset of the Universe

equality
e less

e less or equal

greater

greater or equal
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1 ####F Qeeereeeee @eRLEEERREEE @EELREEEERLREEERRERE
2 HH#H @rEEEEEEEE lattice.py @eEEEREEEREEERERERERE
3 #### QEEEEEREEeE @eREEEEREEEE @EEREEERLEEEREE
4

s # Triangular Poset - partially ordered set

6 # CLASS

7 class TriangPoset (object) :

s _ _metaclass___ = abc.ABCMeta

9

10 @abc.abstractmethod

11 def eq(self, first, second):

13 Return

14 True — iff the elements are equal in the poset.
15 None - iff the elements are not comparable

16 Raise exception iff they are not of comparable classes

18 return

20 @abc.abstractmethod
21 def leq(self, first, second):

23 @abc.abstractmethod
24 def sup(self, =xargs):

2 @abc.abstractmethod

27 def inf (self, =xargs):

28 def neq(self, first, second):
29 def 1t (self, first, second):
30 def geqg(self, first, second):
31 def gt (self, first, second):

0 def is_correct (self, mu, nu):

34 # Standard Triangular Poset
35 # CLASS
36 class StdTriangPoset (TriangPoset) :

38 def eq(self, a, b):

39 def leqg(self, a, b):

40 def sup(self, =xargs):

41 def inf (self, =xargs):

42

43 # Pi Triangular Poset (Pi-Ordering)
4 # CLASS

45 class PiTriangPoset (TriangPoset) :
46

47 def eq(self, a, b):

48 def leg(self, a, b):

49 def sup(self, =xargs):

50 def inf (self, =xargs):
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)

4.2 IF stack bars representations and stack bars memberhsip
and non-membership histogram

In the next script we introduce functions that plot two types of stack bars for IFSs. We also show
a 2D histogram taking into account the membership and non-memberhsip functions.

Next visualizations can be reproduced by the command:
python3 ifs_test.py

e Type 1 visualization of an IFS, as shown on Fig. 18

e Type 2 visualization of an IFS, as shown on Fig. 19

e 2D Histogram of membeship and non-membership degrees, as shown on Fig. 20.

#HEF  GEEEEEEeRE @reEeEereeee @RRQRERQRERREREREREEEQE
#HH4# @EEEEEEEEE ifs_2Dplot.py (@QEEEEEEEEEREEEQE

3 #HE## QRREERERREE cleeleieleleleleleleld @REQREQAEQEQAEEEEQE

def rotate_axislabels (ax, angles={’'x’: 45,’vy’: 45,7z": 45}):
def plot_grid_triangular (ax, rang, muEdges=None, nuEdges=None,
def plot_bar_type_2 (ifs):

wnn

plot stack bars type = ’"interval’ type only

nmmon

def plot_bar type_1(ifs, plot_pi=False):

o

3 plot stack bars type = ’intuitionistic’ type only

wmww

Type 1 stack bars

1.0 - H Membership
HE Non-membership
0.8 -
$ 0.6 -
)
=
o
i)
]
0.4 -
- ‘ HN‘ “N“m““
o |||||||||||I || “‘ | | | | |
0 100 200 300 400 500
Universe

Figure 18. Plot of an IFS of type 1 stack bars.
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I Non-membership
500

H Membership
B Indeterminacy

400

300

Universe

Type 2 Stack Bars

200

100

0

1.0 -
0.8 -

| !
et o
=1 s

0.2 -
0.0 -

saalbaq

Figure 19. Plot of an IFS of type 2 stack bars.

mmm Membership histogram

1200 -

mmm Non-membership histogram

1000 -

17 En. On, & 0, o, On £ Q £ o, kY 12
Y o Yo 6“0 o o % o % %o % %

diysiaquiaw-uoN

400 600 800 1000 1200

200

o

Membership

Figure 20. 2D Histogram: representing the histogram of membeship and non-membership

degrees (see Fig. 21).
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4.3 3D Histograms

In the next file are defined two types of 3D Histograms.

e The first one on Fig. 21 represents 3D Histogram for the membership and non-membership
degrees.

e The second one on Fig. 22 represents 3D Histogram for 2D coordinates of the elements of
the IFS represented in the triangle.

It is noteworthy that such 3D histograms for the degrees of intuitionistic fuzziness are of
particular interest for the visualization of the results of intercriteria analysis as discussed in
[11,12] and further implemented in [18]. The novelty with the herewith proposed histogramic

approach is the better visualization of the cases when otherwise distinct pairs of criteria form
numerically identical intercriteria pairs.

HE Membership histogram bins
H Non-membership histogram bins
® ® Map of the elements from the Universe

=
c
g’ 200 —
(1]
L
o 175 —
—
(=] —
A 150
e
= 58T
g
A 100 —
m
in 5 — I
=]
m — -
; 20 I ' _‘..--'C'—':\..d':"-\
o | | -—-'C"‘\’;--'\'C'bc_\..:‘r\""'\
a _,_.-("""'\\___,_-\-\""' - » __.-<"A>
0o - '_\_,_.-‘ "% -‘l\ _}‘,.--‘\ \... ~ '
T Pl I S S ARG L SO
e = }—""\‘F "'}: :v“'"'\
— ) Mo == == g
- "-.'.AE B -
00"\' .. - ul‘-_.h_r::a .
Y - ——
S TN
@ (Y ™ ~
O,) o & — . .
, o - -
,;b@ 06,3 e by - Q Qo
/)) 0‘_\ — - b o O‘J K4
6 2] b N S o o Q? -]
5 ] ~ o &
% 0\? e @ % ° ‘ o
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Figure 21. 3D plot of 2D histogram: representing the histogram of membeship and
non-membership degrees (see Fig. 20)

L ##HE QeRREERERE

@reEEeEEeEeEeee @RREREEREEREEREEEE
> HHHH @@QRQE@EEQRQ@ 1ifs_3Dplot.py QEEEERQREEEERQEEQQA
> #### Qeeeeeeeee @REEEREEEEEEQE @REREREEEREEREREEREQE
4

s def rotate_axislabels (ax, angles={'x’: 45,’y’: 45,7z’ : 45}):
¢ def plot_grid_triangular (ax, rang, muEdges=None,

nuEdges=None,
def plot_membership_ 3Dhistogram(ifs,

/
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def plot_membership (typ) :

def plot_3D_histogramm (

ifs,

bins=None,

colors={'mu’ :’"b’,’'nu’:"g’,"hist’ :'y’,"elem’ :"xr"}):
rrr

Plot a 3D histogram in the triangular representation of an IFS.

rrr

— — Membership degree grid

- — Non-membership degree grid
Histogram bars

® ® Map of the elements from the Universe

Figure 22. 3D Histogram.

4.4 Topological Operators tool

In this section we present the topological operators tool. Next visualizations can be reproduced
by the command:

python3 ifs_topo_modeler.py
As we can see on Fig. 23, it is an interactive plot where one can change:

e font size of the corresponding point
e contrast of the corresponding point
e radius size of the corresponding point

e show / hide IFS
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e show / hide labels

e save IFSs

e show / hide Closure and Interior operators

The user can interactively drag and drop the dark blue points in the triangle corresponding to
the original IFSs. By pressing the button ’Save IFS’ all the results are are saved in .json formats.
That is, in the folder .\working dir we can see the following files:

e ifs 0000 _original .json

e ifs 0000_inc2_.json
e ifs 0000 _cl2_.json

The files representing the corresponding IFSs look like this:

ifs_0000_original_. json

"data":
"O":

{
[

0.21579643297921236,
0.13886340760817428

1,
"1“:

[

0.00011437481734488664,
0.6976674273681602

1,
H2":

[

0.5100635481451006,
0.34367331976363236

1,
"3":

[

0.2228588437431937¢6,
0.378985373583539

1,
"4":

[

0.5571462865716426,
0.12944685992286575

]
s

"contrast": 1,

"labels_size": 12,

"color"

. "blue",

"marker_size": 0.01,

"label":

"ifs_0000_original"

3 1fs_0000_inc2_. Jjson
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36 "data": {
37 "o": [
38 0.1368520471131605,
39 0.13886340760817428

10 1,

41 "1 [

) 0.00011437481734488664,
43 0.6976674273681602

44 1,

45 "2 [

46 0.510063548145100¢6,

47 0.407469327905453

48 1,

49 "3": [

50 0.146941205347419¢,
51 0.42159414943341567
52 1,

53 "an. [

54 0.557146286571642¢6,
55 0.12944685992286575
56 ]

57 b

58 "contrast": 0.5,

59 "labels_size": 12,

60 "color": "magenta",
61 "marker_size": 0.01,
62 "label": "ifs_0000_inc2"

65 1fs_0000_cl2_.Jjson

66

67 {

68 "data": {

69 "o": [

70 0.271057503085448¢6,
71 0.13886340760817428
72 1,

73 "1 [

74 0.00011437481734488664,
75 0.6976674273681602
76 1,

77 W2Ws

78 0.5100635481451006,
79 0.25

80 1,

81 WZWe

82 0.27600119062023565,
83 0.27246343395884753
84 1,

85 mar: [
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0.5571462865

0.12944685992286575

]
o
"contrast": 0.
"labels_size":
"color": "oran

"marker_size":

716426,

8l
12,
ge",
0.01,

"label": "ifs_0000_cl2"

And the source code and images blow correspond to:

e A screenshot of the UI showing the result of the preinterior and preclosure operators on
the IFS A with binary inclusion indicator metrics (as defined in [17]) of the IFS and its
mappings are visualized (cf. [16]) as shown on Fig. 24.

e The raw functionality of the topological parameters and an IFS are as shown on Fig. 25.

1.0 - - - IS S U SN SNV SR SO S N ® @ Original IFS _
Closure IFS
0.9 4o N S R A A P R R R B ® @ Interior IFS _
0.8 f-=-=-==—-=—-====—]
0.7 f=mmmmmmmmmmmmmneen
0.6 --
e eq
e 0
0.5 ------m-mmmmm o] =i
e square
0.4 e-diam-—-
0.3
0.2
o N
0.0 ; ; -
| |
t t

font size: 5—20;
12.04

contrast: 0—11
.00

radius size: |Ul—1]D
0.2

B showlFs
Klabels

Save
IFS

Kclz
Kinc2

Figure 23. The results of preinterior operator IZ“J; on A € I1FS(X) and preclosure operator

CZ‘;? on A (see [16]).
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Figure 24. The result of the preinterior and preclosure operators on the IFS A with binary
inclusion indicator metrics (cf. [17]) of the IFS and its mappings visualized (cf. [16])

L HHHE QEeEEeEEeeE clcyeicicicieiccierclcierclciercicieicieiecierclcherclcierelc @REEEEEEREEEREEERE
> #HHH @@@@EEEQEQQR 4ifs_triangular_representation.py @QREEEEE@EEEEEEQaA
3 f### QEeEEeeEeeE QEQRLREECERLEERLRLELCLRLRLELRLRRLREEERLRRLELEC @EQREREEEERLREEEREAE
4

s class IfsTriangAbstract (object) :

6 _ _metaclass___ = abc.ABCMeta

8 @abc.abstractmethod

9 def get_data(self):

1 @abc.abstractmethod
12 def get_data_pair(self):

14 class IfsTriang(IfsTriangAbstract):

5 flip = 1

16

17 def _ init_ (self, axes, musnus,
18 radius=0.01,

19 label_id="ifs_001',

20 labels=None,

21 picker=10,

22 alpha_marker=0.5,

23 visible=True,

24 annotation_size=12,

25 show_annotation=True,

26 colors = {'mu’:"b’, 'nu’:'g’, ’elem’:'r’},
27 bins = {'mu’:10, ’'nu’:10},

28 init_flag=True) :

30 self.holder.append (ob7j)
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32 def get_color(self):

33 def get_visible (self):

34 def set_visible(self, visible) :

35 def get_annotation_visible (self):

36 def set_annotation_visible (self, show_annotation) :

38 def get_radius(self):
39 def set_radius(self, radius):
40 def get_annotation_size (self):

41 def set_annotation_size(self, annotation_size):

43 def get_alpha_marker (self) :

44 def set_alpha_marker (self, alpha_contrast):
45 def get_data(self):

46 def get_data_pair(self):

47 def save_to_json(self, json_path):

48

49 @property

50 def default_path(self):

51 def save_to_json_default (self, event):

oA A R A R R A R R R A R R S R A R

54

W

55 class IfsTriangInteractive (IfsTriang) :
56 musnus,
57 radius=0.01,

s8 companions=col.OrderedDict ([]),
59 metrics_unary=col.OrderedDict ([]),
60 metrics_binary=col.OrderedDict ([]),

61 widgets=None,

62 label_id = "',

63 labels=None,

64 picker=10,

65 alpha_marker=0.5,

66 visible=True,

67 annotation_size=12,

68 show_annotation=True,

69 colors = {'mu’:"b’, 'nu’:'g’, ’'elem’:
70 bins = {'mu’:10, ’'nu’:10},

71 init_flag=True

72 ) g

73

74 # Connect to all the events we need
75 def connect (self):

76 def on_press(self, event):

77 def on_pick(self, event):

78

79 # on motion we will move the rect if the mouse is over the object
80 def on_motion(self, event):
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81

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

def sync_companions (self):
def draw_blit (self, obj):
def update_tables (self):

# on release we reset the press data
def on_release(self, event):

def save_to_json_default (self, event):
FHAFF A S

class IfsTriangTopoConstInteractive (IfsTriangInteractive):
def _ _init__ (self,
axes, axes_metrics,
musnus,
topo_const_triang, # NEW related to TOPOCONST
radius=0.01,
companions=col.OrderedDict ([]),
metrics_unary=col.OrderedDict ([]),
metrics_binary=col.OrderedDict ([]),

widgets=None,

label_id = 77,

labels=None,

picker=10,

alpha_marker=0.5,

visible=True,

annotation_size=12,

show_annotation=True,

colors = {'mu’:'b’, 'nu’:'g’, ’'elem’:'r’},

bins = {'mu’:10, ’'nu’:10},

init_flag=True

) S

def connect (self) :
super (IfsTriangTopoConstInteractive, self) .connect ()
self.topo_const_triang.connect ()

#H## @QRRRQRERQRQAERQR (QRRQAEQQAEQRQRRQRRRQARERQAERQRRR EQRERERQAEEEREQREEQEE
#43F9F @RRRQREQRQREQR ifs_properties_topo.py QREQRRRQRRRQRRQRQRERQE
#H### @QRQREQAQREQAEQR (QREQAQEQQRQEQQREQRQREQAQEQQAEQEQRE@ @QREEQAEEEAEEEEQEE

@Define the ifs topological properties and the plots in the triangle
ifs_properties_topo.py

class TopoConst (object) :
(self, ax,
alpha,
beta,
gamma_a,

gamma_Db,
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14 companion=None,
15 label=None) :

17 @classmethod
18 # CLASS CONSTRUCTOR
19 def from_json(cls, Jjson_path, ax):

21 def save_to_json(self, json_path):

23 @property

24 def default_path(self):

25 def save_to_json_default (self, event):
26 def set_topoconst (self, alpha, beta):

28 def _fill basic(self):

29 def fill_fixed(self, typ):

30 def fill_nu_full (self):

31 def fill nu limited(self):
32 def fill mu_limited(self):
33 def fill mu_line(self):

34 def fill_nu_line (self):

35 def fill_inclusion_indicator_interior (self):
36 def draw_topo_object (self):
37 def set_visible(self, flag):
38 def get_visible(self):

s FHEFFFFEEEEFFFFAAEES SR F AR A A R R R

2 class TopoConstGeneral (object) :
43 Jjson_path_topoconst,

44 ax,

45 bins,

46 rotation,

47 color='b’,

48 marker="0") :

49

50 def set_animated(self,value) :
51 def set_annotations_general (self):
53 @classmethod

s4 def from_json(cls, Jjson_path, ax):

s5 def save_to_json(self, json_path):

56 def save_to_json_default (self, event):

57 def set_topoconst (self, alpha, beta, alphal, betal):
58 def draw_topo_object (self) :

59 def set_visible(self, flag):

60 def get_visible(self):

61

I R E R R R R R R R

63
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64 class TopoConstInteractive (TopoConst) :
(self,

alpha,

ax,
beta,

gamma_b,

66
67 gamma_a,
companion=None,

label=None) :

68
69
70
71 # ’"connect to all the events we need’

def connect (self):

73 def on_pick(self, event):
74
75 # 'on motion we will move the rect if the mouse is over us’
76 def on_motion(self, event):
77
78 # "on release we reset the press data’
79 def on_release(self, event):
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Figure 25. Raw functionality of the topological parameters and an IFS
| ###H @EEEEEQEQRQRQ (QQAQQQEEEEEEEEEEEQRQQQQQQ (@EEEEEEEEEEEEQa
2 #H#HH @RRRERERQRQRRR@ 1ifs_properties_plot.py @GRRERRRRERRRQRREQ
3 #4444 QQRQREEQEQEQEE @@EEEEEQRRQRQRLRQRQRLRLREEEEEE@ (@EEEERQRLRLRQRQEEEEME

4

5 @ Define the widgets for the interactive plot

¢ 1fs_properties_plot.py
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s # Gives the main methods structure of the IFS proerty class
9 # CLASS

10 class PropertiesBasic

12 # ABSTRACT CLASS METHODS

14 @abc.abstractmethod
15 def get_data(self):

17 @abc.abstractmethod
18 def set_data(self, data):

20 @abc.abstractclassmethod
21 def get_color (self):

23 @abc.abstractclassmethod

24 def set_color(self):

6 # Extends the PropertiesBasic with annotations
27 # CLASS

8 class PropertiesAnnotations (PropertiesBasic) (
29 # Label of the IFS property

30 label=None,

32 # Holder of the IFS
33 holder=None,

35 # Radius of the ’'points’

36 radius=5,

38 # Annotations (mainly numbers)

39 annotations=None,

41 # Brightness of the ’point’
42 alpha_marker=0.5,

43

44 # Size of the label

45 labels_size=12,

46

47 # Hide / Show the IFS

48 hide_ifs=False,

49

50 # Hide / Show the Annotation
51 show_ann=True,

53 # Hide / Show the ’'points’
54 showverts=True,
55

56 # Hide / Show edges if ’points’ are ordered
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57 showedges=False,

58

59 # Hide / Show labels
60 showlabels=False)

61

62 # CLASS METHODS

64 def init_default (self, ax):

65 def set_animated(self, value):

66 def create_annotations (self, ax):

67 def set_visible_annotations(self, wvalue):

68 def set_animated_annotations(self, wvalue):

69 def set_data_annotations(self, positions):

70 def set_data_annotations_single(self, idx, pos):
71 def set_fontsize_annotations(self, fontsize):
72 def set_zorder_annotations(self, zorder):

73 def draw_annotations (self, ax):

74

s # CLASS

¢ class PropertiesIFS (PropertiesAnnotations):

\‘

N

77

78 def save_to_json(self, json_path):
79 def save_to_json_default (self, event):
80

81 @classmethod

82 def from_json (

83 cls,

84 json_path,

85 ax,

86 bins,

87 rotation,

88 color=None,

89 marker=None,

90 alpha=None,

91 markersize=None) :

92

93 # CLASS METHODS

94 def get_data(self):

95 def set_data(self, mus, nus):

96 def get_data_pair(self):

97 def get_color(self):

98 def set_color(self):

99 def get_markersize (self):

100 def set_markersize(self,size):

101 def draw_holder_annotations (self, ax):

I ####  CQRREREREEREQ (QRECECERECRECREREREEERERERE (EREREEEEEEEEREEQEE
2 #HHEH @QREEEEREEE@ widgets_operator.py @reEeEereEeEeeee
3 ####  CRRERERERREE (CRERELERECERECREEREREREEREERE (EREEEEEEEEREEEE

)
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s @Define the widgets for the interactive plot

¢ widgets_operator.py

7

8

9

10

20

21

#Gives the structure of the Widgets

class WidgetsSimple (

canvas=None, # Canvas

active_prop=None) # Active IFS property

# Gives functionalities of the operators defined by the User
class WidgetsSimpleOperator (WidgetsSimple) (

canvas=None, # Canvas

active_prop=None) # Active IFS property

# Widgets with choice of active ifs

» class WidgetsBasic (WidgetsSimple)

4.5 Modal operators tool

In a similar way as in the previous section, we present here the four main modal operators tool.
Let us, for example fix,
a=0.2573=0.3

Next visualizations, as shown on Fig. 26 and Fig. 27, can be reproduced by the command:
python3 ifs_modal_modeler.py

e original IFS: dark blue color

e G, 3: orange color

o F, s yellow color

e M, 5: cyan color

e [J,p: green color

The user can interactively drag and drop the dark blue points in the triangle corresponding to
the original IFSs. By pressing the button ’Save IFS’ all the results are are saved in .json formats.
That is, in the folder .\working dir we can see the following files:

e ifs 0000 _original .json
ifs_0000_G _.json
e ifs 0000_F _.json
e ifs 0000_H_.json
e ifs 0000_J _.json

Then in our example the files corresponding to the first two files will look like,
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1 1fs_0000_original_. json

5

3 {

4 "data": {

5 "0": [

6 0.5853959296275679,
7 0.0611768892043798
8 i

9 "1 [

10 0.00011437481734488664,
1 0.6976674273681602
12 i

13 "2": [

14 0.0923385947687978,
15 0.853244109182887

16 1,

17 "3": [

18 0.1862602113776709,
19 0.6544392729569523
20 1,

21 "4v. [

2 0.3546905113375116,
23 0.4637343027513148
24 ]

25 by

26 "contrast": 1,

27 "labels_size": 12,

28 "color": "blue",

29 "marker_size": 0.01,

30 "label": "ifs_0000_original"

33 1fs_0000_G_.json

36 "data": {

37 "0": [

38 0.43904694722067594,
39 0.04282382244306586
40 1,

41 "1 [

42 8.578111300866498e-05,
43 0.48836719915771215
44 1,

45 "2 [

46 0.06925394607659835,
47 0.5972708764280208
48 1,

49 "3 [

50 0.13969515853325318,
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51 0.45810749106986653

52 Iy

53 "4nv. [

54 0.2660178835031337,
55 0.3246140119259203
56 ]

57 b,

58 "contrast": 0.8,

59 "labels_size": 12,

60 "color": "orange",

61 "marker_size": 0.01,
62 "label": "ifs_0000_G"
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Figure 26. An interactive modeler of the four main modal operators for IFSs.
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Figure 27. An interactive modeler of the four main modal operators for IFSs and the measures of
their inclusion indicator compared to the original IFS.

5 Conclusion

The for computation and visualization of IFSs and their operators, proposed in this paper
implementation, can be used for the modeling of real world problems within the framework of
IFS. These operators can also be applied to the results from intercriteria analysis approach in
order to obtain better visual feedback regarding their inherent topological aspects. Furthermore,
in the future, we plan to discontinue matplotlib as the main visualization library by adopting more
sophisticated and flexible tools to allow better interactivity between the user and the software.
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