As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Properties of intuitionistic fuzzy line graphs

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/18/3/52-60
Title of paper: Properties of intuitionistic fuzzy line graphs
Author(s):
M. Akram
Punjab University College of Information Technology, University of the Punjab, Old Campus, Lahore-54000, Pakistan
makrammath@yahoo.comm.akram@pucit.edu.pk
Parvathi Rangasamy
Department of Mathematics, Vellalar College for Women, Erode – 638 012, Tamilnadu, India
paarvathis@rediffmail.com
Presented at: 16th ICIFS, Sofia, 9-10 September 2012
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 18 (2012) Number 3, pages 52—60
Download:  PDF (167  Kb, File info)
Abstract: Concepts of graph theory have applications in many areas of computer science including data mining, image segmentation, clustering, image capturing, networking. An intuitionistic fuzzy set is a generalization of the notion of a fuzzy set. Intuitionistic fuzzy models give more precision, flexibility and compatibility to the system as compared to the fuzzy models. In this paper, we investigate some interesting properties of intuitionistic fuzzy line graphs.
Keywords: Intuitionistic fuzzy intersection graph, intuitionistic fuzzy line graphs.
AMS Classification: 05C99
References:
  1. Akram, M. Bipolar fuzzy graphs, Information Sciences, Vol. 181, 2011, 5548–5564.
  2. Akram, M., W. A. Dudek. Interval-valued fuzzy graphs, Computers Math. Appl., Vol. 61, 2011, 289–299.
  3. Akram, M., W. A. Dudek. Intuitionistic fuzzy left k-ideals of semirings, Soft Comput., Vol. 12, 2008, 881–890.
  4. Akram, M., B. Davvaz. Strong intuitionistic fuzzy graphs, Filomat, Vol. 26, 2012, 177–196.
  5. Atanassov, K. T. Intuitionistic Fuzzy Sets: Theory and Applications, Springer, 1999.
  6. Atanassov, K. T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, 87–96.
  7. Atanassov, K. T., G. Pasi, R. Yager, V. Atanassova, Intuitionistic fuzzy graph interpretations of multi-person multi-criteria decision making, Proceedings of EUSFLAT Conf. 2003, 177–182.
  8. Bhattacharya, P. Some remarks on fuzzy graphs, Pattern Recognition Letters, Vol. 6, 1987, 297–302.
  9. Karunambigai, M. G., R.Parvathi, O. K.Kalaivani. A Study on Atanassov´s Intuitionistic Fuzzy Graphs, Proceedings of the International Conference on Fuzzy Systems, FUZZ-IEEE 2011, Taipei, Taiwan, 2011, 157–167.
  10. Karunambigai, M. G., O. K.Kalaivani. Self centered intuitionistic fuzzy graph, World Applied Sciences Journal, Vol. 14, 2011, No. 12, 1928–1936.
  11. Kauffman, A. Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, Vol. 1, 1973.
  12. Mordeson, J. N., P. S. Nair. Fuzzy graphs and fuzzy hypergraphs, Second edition, Physica Verlag, Heidelberg, 2001.
  13. Rosenfeld, A. Fuzzy graphs, In: Fuzzy Sets and their Applications (Zadeh, L. A., K. S. Fu, M. Shimura, Eds.), Academic Press, New York, 1975, 77–95.
  14. Shannon, A., K. T. Atanassov. A first step to a theory of the intuitionistic fuzzy graphs, Proceeding of FUBEST (Lakov, D., Ed.), Sofia, 1994, 59–61.
  15. Shannon, A., K. T. Atanassov. Intuitionistic fuzzy graphs from α-, β-, and (αβ)-levels, Notes on Intuitionistic Fuzzy Sets, Vol. 1, 1995, No. 1, 32–35.
  16. Zadeh, L. A. Fuzzy sets, Information and Control, Vol. 8, 1965, 338–353.
  17. Zadeh, L. A. Similarity relations and fuzzy orderings, Information Sciences, Vol. 3, 1971, No. 2, 177–200.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.