Title of paper:
|
Primary interval-valued intuitionistic fuzzy M group
|
Author(s):
|
G. Prasannavengeteswari
|
Ramanujan Research Center, PG and Research Department of Mathematics, Government Arts College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli), Kumbakonam-612002, Tamil Nadu, India
|
udpmjanani@gmail.com
|
K. Gunasekaran
|
Government Arts and Science College (Affiliated to Bharathidasan University, Tiruchirappalli), Kuttalam-609808, Tamil Nadu, India
|
drkgsmath@davjalandhar.com
|
S. Nandakumar
|
PG and Research Department of Mathematics, Government Arts College (Affiliated to Bharathidasan University, Tiruchirappalli), Ariyalur-621713, Tamil Nadu, India
|
udmnanda@gmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 2, pages 120–131
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.2.120-131
|
Download:
|
PDF (950 Kb, File info)
|
Abstract:
|
The concept of interval-valued intuitionistic fuzzy M group is extended by introducing primary interval-valued intuitionistic fuzzy M group and primary interval-valued intuitionistic fuzzy anti M group using this concept primary interval-valued intuitionistic fuzzy M group and primary interval-valued intuitionistic fuzzy anti M group is defined and using some properties are established.
|
Keywords:
|
Intuitionistic fuzzy set, Primary interval-valued intuitionistic fuzzy M group, Primary interval-valued intuitionistic fuzzy anti M group, Primary interval-valued intuitionistic fuzzy M group, Primary interval-valued intuitionistic fuzzy anti M group.
|
AMS Classification:
|
03E72.
|
References:
|
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag.
- Atanassov, K. T. (2020). Interval-Valued Intuitionistic Fuzzy Sets, Springer Cham.
- Balasubramanian, A., Muruganantha Prasad, K. L., & Arjunan, K. (2015). Bipolar Interval Valued Fuzzy Subgroups of a Group, Bulletin of Mathematics and Statistics Research, 3(3), 234–239.
- Chakrabarthy, K., Biswas, R., & Nanda, S. (1997). A note on union and intersection of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(4), 34–39.
- Gunasekaran, K., & Gunaseelan, D. (2017). Some Operations on Bipolar Intuitionistic M-Fuzzy Group and Anti M-Fuzzy Group, International Journals of Advanced Research in Science, Engineering and Technology, 4(3), 3511–3518.
- Lee, K. M. (2000). Bipolar valued fuzzy sets and their operations. Proceeding of International Conference on Intelligent Technologies, Bangkok, Thailand, 307–312.
- Palanivelrajan, M., & Nandakumar, S. (2012). Intuitionistic Fuzzy Primary and Semiprimary Ideal. Indian Journal of Applied Research, 59(1), 159–160.
- Prasannavengeteswari, G., Gunasekaran, K., & Nandakumar, S. (2021). Primary Bipolar Intuitionistic M Fuzzy Group. Journal of Shanghai Jiaotong University, 17(4), 82–92.
- Rosenfeld, A. (1971). Fuzzy Groups, Journal of Mathematical Analysis and Its Application, 35, 512–517.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
- Zhang, W. R. (1998). Bipolar fuzzy sets. Proceeding of FUZZ-IEEE, 835–840.
- Zimmermann, H. J. (1985). Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff Publishing Co.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|