As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Parameter tuning in fuzzy clustering of intuitionistic fuzzy data. Part 1

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/17/2/44-51
Title of paper: Parameter tuning in fuzzy clustering of intuitionistic fuzzy data. Part 1
Author(s):
N. Karthikeyini Visalakshi
Department of Computer Science, Kongu Engineering College, Perundurai, Tamilnadu, India
karthichitru@yahoo.co.in
Rangasamy Parvathi
Department of Mathematics, Vellalar College for Women, Erode – 638 012, Tamilnadu, India
paarvathis@rediffmail.com
Vassia Atanassova
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy, Acad. G. Bonchev Str., Block 105, Sofia – 1113, Bulgaria
vassia.atanassova@gmail.com
Presented at: 15th ICIFS, Burgas, 11-12 May 2011
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 17 (2011) Number 2, pages 44—51
Download:  PDF (48  Kb, File info)
Abstract: In this paper, a comparative analysis is made on Fuzzy C-Means clustering of intuitionistic fuzzy data with five different values of parameter λ. Ongoing research also focuses, in particular, on enhancing proposed clustering algorithm to produce intuitionistic fuzzy partitions.
Keywords: Clustering, Fuzzy C-Means, Intuitionistic fuzzy data.
AMS Classification: 03E72, 68T10
References:
  1. Dae-Won Kim, Kwang Hyung Lee, Doheon Lee (2004) A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recognition Letters 25(2): 227–237.
  2. Dimitrios K. Iakovidis, Nikos Pelekis, Evangelos E. Kotsifakos, Ioannis Kopanakis (2008) Intuitionistic fuzzy clustering with applications in computer vision. In: Advanced concepts for intelligent vision system. Springer, Berlin.
  3. Halkidi, M., Y. Batistakis, M. Vazirgiannis. (2002) Cluster validity methods: part I. ACM SIGMOD Record. 31(2):19–27.
  4. Haojun Sun, Shengrui Wang, Qingshan Jiang (2004) FCM-based model selection algorithms for determining the number of clusters. Pattern Recognition 37(10): 2027–2037.
  5. Hui Xiong, Junjie Wu, Jian Chen (2006) K-means clustering versus validation measures: a data distribution perspective. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge Discovery and Data Mining. 779–784.
  6. Vlachos, I., G. D. Sergiadis (2007) The Role of Entropy in Intuitionistic Fuzzy Contrast Enhancement. Foundations of fuzzy logic and soft computing, Springer, Berlin.
  7. Jain A K, Murthy M N, Flynn P J (1999) Data Clustering: A Review. ACM Computing Surveys 31(3): 265–323.
  8. Karthikeyani Visalakshi, K. Thangavel, R. Parvathi (2010) An intuitionistic fuzzy approach to fuzzy clustering of numerical dataset , International Journal of Computer Theory and Engineering, 2(2), 1793–8201, 295–302.
  9. Atanassov, K. (2003) Intuitionistic fuzzy sets: past, present and future. In: Proceedings of the 3rd Conference of the European Society for Fuzzy Logic and Technology. 12–19.
  10. Lotfi A. Zadeh (1965) Fuzzy sets. Information and Control 8(3): 338–353.
  11. Merz C J, Murphy P M (1998) UCI Repository of Machine Learning Databases. Irvine, University of California, http://www.ics.uci.eedu/~mlearn/.
  12. Miin-Shen Yang, Cheng-Hsiu Ko (1996), On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets and Systems, 84:49–60.
  13. Nikos Pelekis, Dimitrios K. Iakovidis, Evangelos E. Kotsifakos, Ioannis Kopanakis (2008) Fuzzy clustering of intuitionistic fuzzy data. International journal of business intelligence and data mining. 3(1): 45–65.
  14. Pang-Ning Tan, Steinbach M., Kumar V.(2006) Cluster Analysis: Basic Concepts and algorithms. In: Introduction to Data Mining, Pearson Addison Wesley, Boston.
  15. Pierpaolo D'Urso, Paolo Giordani (2006) A weighted fuzzy c-means clustering model for fuzzy data. Computational Statistics & Data Analysis 50(6): 1496–1523.
  16. Sueli A. Mingoti, Joab O. Lima (2006) Comparing SOM neural network with fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research 174(3): 1742–1759.
  17. Tai Wai Cheng, Dimitry B.Goldgof, Lawrence O Hall (1995) Fast Clustering with application to fuzzy rule generation. In: Proceedings of the 4th IEEE International conference on fuzzy systems. 2289–2295.
  18. Torra, V. Miyamoto, S., Endo, Y. Domingo-Ferrer, J. (2008) On intuitionistic fuzzy clustering for its application to privacy. In: Proceedings of IEEE International conference on fuzzy systems. 1042–1048.
  19. Weina, Wang, Yunjie Zhang, Yi Li, Xiaona Zhang (2006) The Global Fuzzy C-Means Clustering Algorithm. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. 3604–3607.
  20. Wen-Liang Hung, Jinn-Shing Lee, Cheng-Der Fuh (2004) Fuzzy Clustering Based On Intuitionistic Fuzzy Relations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12(4): 513–530.
  21. Wen-Liang Hung Miin-Shen Yang (2005) Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation. Fuzzy Sets and Systems 150(3): 561–577.
  22. Zeshui Xu, Jian Chen, Junjie Wu (2008) Clustering algorithm for intuitionistic fuzzy sets. Information Sciences 178(19): 3775–3790.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.