As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:On the translational invariant intuitionistic fuzzy subset of a Γ-ring

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/1/11-22
Title of paper: On the translational invariant intuitionistic fuzzy subset of a Γ-ring
Author(s):
Hem Lata
Research Scholar, Lovely Professional University, Phagwara, Punjab, India
goyalhema1986@gmail.com
P. K. Sharma
Post Graduate, Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 1, pages 11–22
DOI: https://doi.org/10.7546/nifs.2022.28.1.11-22
Download:  PDF (212 Kb  Kb, File info)
Abstract: In this paper, we introduce the notion of translational invariant intuitionistic fuzzy subset of a Γ-ring and generalize some notions of a ring to a Γ-ring. Also, we define ideals of a Γ-ring generated by an intuitionistic fuzzy subset with an element of Γ-ring and study their properties. The notion of units, associate, prime element, irreducible element are also generalized with respect to the intuitionistic fuzzy subset of a Γ-ring. Further, we study the properties of homomorphic image and pre-image of translational invariant intuitionistic fuzzy subset under the Γ-ring homomorphism and we prove that every homomorphic image of a prime ideal of a Γ-ring generated by an Aγ-prime element and translational invariant and f-invariant intuitionistic fuzzy subset is also a prime ideal.
Keywords: Γ-Ring, Translational invariant intuitionistic fuzzy subset (TIIFS), f-invariant intuitionistic fuzzy subset, Aγ-unit, Aγ-prime element.
AMS Classification: 16Y99, 03F55, 03G25
References:
  1. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  2. Barnes, W. E. (1966). On the Γ-ring of Nobusawa. Pacific Journal of Mathematics, 18, 411–422.
  3. Bhargavi, Y. (2020). A study on translational invariant vague set of a Γ-semiring. Afrika Matematika, DOI: 10.1007/s13370-020-00794-1.
  4. Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
  5. Burton, D. M. (1970). A first course in rings and ideals. Addison-Wesley, Available online: http://en.b-ok.cc/book/5309376/04beda.
  6. Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic fuzzy ideals of a ring. Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
  7. Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Mathematical Journal, 25(1), 19–41.
  8. Kim, K.H., Jun, Y.B., & Ozturk, M. A. (2001). Intuitionistic fuzzy ideal of Γ-rings. Scientiae Mathematicae Japonicae, 54, 51–60.
  9. Nobusawa, N. (1964). On a generalization of the Ring Theory. Osaka Journal of Mathematics, 1, 81–89.
  10. Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of intuitionistic fuzzy ideal of Γ-rings, Thai Journal of Mathematics, 9(2), 305–318.
  11. Ravisanka, T. S., & Shukla, U. S. (1979). Structure of Γ-rings, Pacific Journal of Mathematics, 80(2), 537–559.
  12. Ray, A. K. (1999). Quotient group of a group generated by a subgroup and a fuzzy subset. Journal of Fuzzy Mathematics, 7(2), 459–463.
  13. Ray, A. K., & Ali, T. (2002). Ideals and divisibility in a ring with respect to a fuzzy subset. Novi Sad Journal of Mathematics, 32(2), 67–75.
  14. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.