Title of paper:
|
On the translational invariant intuitionistic fuzzy subset of a Γ-ring
|
Author(s):
|
Hem Lata
|
Research Scholar, Lovely Professional University, Phagwara, Punjab, India
|
goyalhema1986@gmail.com
|
P. K. Sharma
|
Post Graduate, Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 1, pages 11–22
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.1.11-22
|
Download:
|
PDF (212 Kb Kb, File info)
|
Abstract:
|
In this paper, we introduce the notion of translational invariant intuitionistic fuzzy subset of a Γ-ring and generalize some notions of a ring to a Γ-ring. Also, we define ideals of a Γ-ring generated by an intuitionistic fuzzy subset with an element of Γ-ring and study their properties. The notion of units, associate, prime element, irreducible element are also generalized with respect to the intuitionistic fuzzy subset of a Γ-ring. Further, we study the properties of homomorphic image and pre-image of translational invariant intuitionistic fuzzy subset under the Γ-ring homomorphism and we prove that every homomorphic image of a prime ideal of a Γ-ring generated by an Aγ-prime element and translational invariant and f-invariant intuitionistic fuzzy subset is also a prime ideal.
|
Keywords:
|
Γ-Ring, Translational invariant intuitionistic fuzzy subset (TIIFS), f-invariant intuitionistic fuzzy subset, Aγ-unit, Aγ-prime element.
|
AMS Classification:
|
16Y99, 03F55, 03G25
|
References:
|
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Barnes, W. E. (1966). On the Γ-ring of Nobusawa. Pacific Journal of Mathematics, 18, 411–422.
- Bhargavi, Y. (2020). A study on translational invariant vague set of a Γ-semiring. Afrika Matematika, DOI: 10.1007/s13370-020-00794-1.
- Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
- Burton, D. M. (1970). A first course in rings and ideals. Addison-Wesley, Available online: http://en.b-ok.cc/book/5309376/04beda.
- Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic fuzzy ideals of a ring. Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
- Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Mathematical Journal, 25(1), 19–41.
- Kim, K.H., Jun, Y.B., & Ozturk, M. A. (2001). Intuitionistic fuzzy ideal of Γ-rings. Scientiae Mathematicae Japonicae, 54, 51–60.
- Nobusawa, N. (1964). On a generalization of the Ring Theory. Osaka Journal of Mathematics, 1, 81–89.
- Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of intuitionistic fuzzy ideal of Γ-rings, Thai Journal of Mathematics, 9(2), 305–318.
- Ravisanka, T. S., & Shukla, U. S. (1979). Structure of Γ-rings, Pacific Journal of Mathematics, 80(2), 537–559.
- Ray, A. K. (1999). Quotient group of a group generated by a subgroup and a fuzzy subset. Journal of Fuzzy Mathematics, 7(2), 459–463.
- Ray, A. K., & Ali, T. (2002). Ideals and divisibility in a ring with respect to a fuzzy subset. Novi Sad Journal of Mathematics, 32(2), 67–75.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|