Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 2022, Volume 28, Number 1, Pages 11–22 DOI: 10.7546/nifs.2022.28.1.11-22

On the translational invariant intuitionistic fuzzy subset of a Γ-ring

Hem Lata¹ and P. K. Sharma²

¹ Research Scholar, Lovely Professional University Phagwara, Punjab, India e-mail: goyalhema1986@gmail.com

² Post-Graduate Department of Mathematics, D.A.V. College Jalandhar, Punjab, India e-mail: pksharma@davjalandhar.com

Received: 10 December 2021 Revised: 18 March 2022 Accepted: 20 March 2022

Abstract: In this paper, we introduce the notion of translational invariant intuitionistic fuzzy subset of a Γ -ring and generalize some notions of a ring to a Γ -ring. Also, we define ideals of a Γ -ring generated by an intuitionistic fuzzy subset with an element of Γ -ring and study their properties. The notion of units, associate, prime element, irreducible element are also generalized with respect to the intuitionistic fuzzy subset of a Γ -ring. Further, we study the properties of homomorphic image and pre-image of translational invariant intuitionistic fuzzy subset under the Γ -ring homomorphism and we prove that every homomorphic image of a prime ideal of a Γ -ring generated by an A_{γ} -prime element and translational invariant and f-invariant intuitionistic fuzzy subset is also a prime ideal.

Keywords: Γ -Ring, Translational invariant intuitionistic fuzzy subset (TIIFS), f-invariant intuitionistic fuzzy subset, A_{γ} -unit, A_{γ} -prime element.

2020 Mathematics Subject Classification: 16Y99, 03F55, 03G25.

1 Introduction

The notion of a Γ -ring was introduced by N. Nobusawa [9] as more general than the notion of a ring. W. E. Barnes [2] weakened slightly the conditions in the definition of Γ -rings in the sense of N. Nobusawa. The structure of Γ -rings can be found in [11]. The notion of intuitionistic

fuzzy set was introduced by K. T. Atanassov [1] to generalize the notion of fuzzy set given by L. A. Zadeh [14]. R. Biswas [4] was the first one to introduce the concept of intuitionistic fuzzy subgroup of a group and established many important properties. The notion of intuitionistic fuzzy subring and ideal in a ring was introduced by K. Hur et al. in [6,7]. K. H. Kim et al. in [8] have studied intuitionistic fuzzy ideal of Γ -rings which was further studied by N. Palaniappan et al. in [10]. A. K. Ray [12] introduced the concept of translational invariant fuzzy subset in a ring. A. K. Ray and T. Ali in [13] also studied ideals and divisibility in a ring with respect to a fuzzy subset. Y. Bhargavi [3] studied the translational invariant vague set of a Γ -semiring. The purpose of this paper is to generalize some of the classical results of ring theory using the notion of a translational invariant intuitionistic fuzzy subset (TIIFS) of a Γ -ring.

2 **Preliminaries**

In this section, we list some basic concepts and definitions on Γ -rings theory and intuitionistic fuzzy sets theory, which are necessary for the better understanding of the paper.

Definition 2.1 ([2]). If (M, +) and $(\Gamma, +)$ are additive Abelian groups, then M is called a Γ -ring if there exists a mapping $f : M \times \Gamma \times M \to M$, where $f(x, \alpha, y)$ is denoted by $x\alpha y, x, y \in M, \gamma \in \Gamma$ satisfying the following conditions:

(1) $x\alpha y \in M$.

(2)
$$(x+y)\alpha z = x\alpha z + y\alpha z, x(\alpha+\beta)y = x\alpha y + x\beta y, x\alpha(y+z) = x\alpha y + x\alpha z.$$

(3)
$$(x\alpha y)\beta z = x\alpha(y\beta z)$$
. for all $x, y, z \in M$, and $\gamma \in \Gamma$.

These conditions are further strengthened by defining another function $g : \Gamma \times M \times \Gamma \rightarrow \Gamma$, where $g(\alpha, x, \beta)$ is denoted by $\alpha x \beta, x \in M, \alpha, \beta \in \Gamma$, satisfying the following conditions for all $x, y, z \in M$ and for all $\alpha, \beta, \gamma \in \Gamma$,

(1') $x\alpha y \in M, \alpha x\beta \in \Gamma.$

$$(2') (x+y)\alpha z = x\alpha z + y\alpha z, x(\alpha+\beta)y = x\alpha y + x\beta y, x\alpha(y+z) = x\alpha y + x\alpha z.$$

- (3') $(x\alpha y)\beta z = x\alpha(y\beta z).$
- (4') $x\alpha y = 0_M$ for all $x, y \in M$ implies $\alpha = 0_{\Gamma}$.

We then have a Γ -ring in the sense of Nobusawa [9].

Definition 2.2 ([2, 10]). A subset N of a Γ -ring M is a left (right) ideal of M if N is an additive subgroup of M and

$$M\Gamma N = \{x\alpha y | x \in M, \alpha \in \Gamma, y \in N\}, (N\Gamma M)$$

is contained in N. If N is both a left and a right ideal, then N is a two-sided ideal, or simply an ideal of M.

Definition 2.3 ([13]). A Γ -ring M is said to be a commutative Γ -ring if $x\gamma y = y\gamma x, \forall x, y \in M$, $\gamma \in \Gamma$.

Definition 2.4 ([13]). Let M be a Γ -ring. An element $e \in M$ is said to be unity if for each $x \in M$ there exists $\gamma \in \Gamma$ such that $x\gamma e = e\gamma x = x$.

Definition 2.5 ([13]). An ideal P of a Γ -ring M is said to be prime ideal of M if for any $x, y \in M$, $\gamma \in \Gamma$, $x\gamma y \in P$ implies that $x \in P$ or $y \in P$.

Definition 2.6 ([2, 13]). Let M and M' be two Γ -rings. Then $f : M \to M'$ is called a Γ -homomorphism if

- f(x+y) = f(x) + f(y)
- $f(x\gamma y) = f(x)\gamma f(y)$, for all $x, y \in M, \gamma \in \Gamma$.

Definition 2.7 ([1]). An intuitionistic fuzzy set A in X can be represented as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Remark 2.8 ([1]). (i) When $\mu_A(x) + \nu_A(x) = 1$, i.e., $\nu_A(x) = 1 - \mu_A(x) = \mu_{A^c}(x)$, then A is called a fuzzy set.

(ii) An intuitionistic fuzzy set (IFS) $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ is shortly denoted by $A(x) = (\mu_A(x), \nu_A(x))$, for all $x \in X$.

Proposition 2.9 ([1]). If A, B be two intuitionistic fuzzy sets of X, then

(i)
$$A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x)$$
 and $\nu_A(x) \ge \nu_B(x), \forall x \in X;$

(ii) $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$, i.e., A(x) = B(x), for all $x \in X$.

Further if $f: X \to Y$ is a mapping and A, B be respectively IFS of X and Y, then the image f(A) is an IFS of Y defined as $\mu_{f(A)}(y) = \sup\{\mu_A(x) : f(x) = y\}$, $\nu_{f(A)}(y) = \inf\{\nu_A(x) : f(x) = y\}$, for all $y \in Y$ and the inverse image $f^{-1}(B)$ is an IFS of X defined as $\mu_{f^{-1}(B)}(x) = \mu_B(f(x)), \nu_{f^{-1}(B)}(x) = \nu_B(f(x))$, for all $x \in X$, i.e., $f^{-1}(B)(x) = B(f(x))$, for all $x \in X$. Also the IFS A of X is said to be f-invariant if for any $x, y \in X$, whenever f(x) = f(y) implies A(x) = A(y).

3 Translational invariant intuitionistic fuzzy subset of a Γ-ring

Throughout this section, M is a Γ -ring with unities and the zero element θ .

Definition 3.1. Let A be an intuitionistic fuzzy subset of M. A is called a left translational invariant intuitionistic fuzzy subset with respect to the internal addition if A(x) = A(y) implies that A(x + m) = A(y + m), for all $x, y, m \in M$. Again A is called a left translational invariant

intuitionistic fuzzy subset with respect to the external multiplication if A(x) = A(y) implies that $A(m\gamma x) = A(m\gamma y)$, for all $x, y, m \in M$ and for all $\gamma \in \Gamma$. Similarly, we can define the notion of right translational invariant intuitionistic fuzzy subset with respect to the operation (addition, multiplication) in M.

Remark 3.2. An IFS A is said to be commutative under internal addition (or external multiplication) on M if A(x + y) = A(y + x) (or $A(x\gamma y) = A(y\gamma x)$), for all $x, y \in M, \gamma \in \Gamma$. Therefore, when A is commutative, then the two notion coincides. In this case, we say that A is a translational invariant intuitionistic fuzzy subset (TIIFS) of M with respect to the operation + (or \times).

Example 3.3. Consider the Γ -ring M, where M = Z the ring of integers and $\Gamma = 2Z$, the ring of even integers and $x\gamma y$ denotes the usual product of integers x, γ, y . Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy subset of M defined by

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \text{ is an even integer} \\ 0.5, & \text{if } x \text{ is an odd integer} \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x \text{ is an even integer} \\ 0.3, & \text{if } x \text{ is an odd integer.} \end{cases}$$

Then it is easy to verify that A is an TIIFS of M with respect to both the operation + and \times .

Example 3.4. Consider the Γ -ring M, where $M = \{[a_{ij}] : a_{ij} \in Z_2, i = 1, j = 1, 2\}$, the set of (1×2) matrices whose entries are from Z_2 and $\Gamma = \{[a_{ij}] : a_{ij} \in Z_2, i = 1, 2, j = 1\}$, the set of (2×1) matrices whose entries are from Z_2 . Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy subset of R defined by

$$\mu_A(a_{ij}) = \begin{cases} 0.7, & \text{if } a_{11} = a_{12} = 0\\ 0.7, & \text{if } a_{11} = 1, a_{12} = 0\\ 0.3, & \text{if } a_{11} = 0, a_{12} = 1\\ 0.3, & \text{if } a_{11} = a_{12} = 1. \end{cases}, \quad \nu_A(a_{ij}) = \begin{cases} 0.2, & \text{if } a_{11} = a_{12} = 0\\ 0.2, & \text{if } a_{11} = 1, a_{12} = 0\\ 0.5, & \text{if } a_{11} = 0, a_{12} = 1\\ 0.5, & \text{if } a_{11} = a_{12} = 1. \end{cases}$$

Then it is easy to verify that A is an TIIFS of M with respect to both the operation addition of matrices and multiplication of matrices defined on M.

From this point onwards, every intuitionistic fuzzy subset A of a Γ -ring M satisfies the property A(-x) = A(x), for all $x \in M$.

Proposition 3.5. Let A be a TIIFS with respect to both internal addition and external multiplication operations defined on M. Then for any $m \in M$ the set

$$L(m,\gamma,A) = \{x : x \in M \text{ such that } A(x) = A(y\gamma m), \text{ for some } y \in M\}$$

is a left ideal of M.

Proof. Clearly $L(m, \gamma, A) \neq \emptyset$, since $\theta \in L(m, \gamma, A)$ as $A(\theta) = A(\theta\gamma m)$. Let $x_1, x_2 \in L(m, \gamma, A)$. Then $A(x_1) = A(y_1\gamma m)$ and $A(x_2) = A(y_2\gamma m)$, for some $y_1, y_2 \in M$. Now

$$A(x_1) = A(y_1\gamma m) \Rightarrow A(x_1 - x_2) = A(y_1\gamma m - x_2) = A(x_2 - y_1\gamma m)$$
 (i)

and

$$A(x_2) = A(y_2\gamma m) \Rightarrow A(x_2 - x_1) = A(y_2\gamma m - x_1) = A(x_1 - y_2\gamma m)$$
(ii)

From (i) and (ii) we get $A(x_1 - y_2\gamma m) = A(x_2 - y_1\gamma m) \Rightarrow A(x_1 - x_2) = A(y_1\gamma m - y_2\gamma m) = A((y_1 - y_2)\gamma m)$. Thus, $x_1 - x_2 \in L(m, \gamma, A)$, since $(y_1 - y_2) \in M$.

Also, for any $y_3 \in M$ and $\gamma_1 \in \Gamma$, we have $A(y_3\gamma_1x_1) = A(y_3\gamma_1(y_1\gamma m)) = A((y_3\gamma_1y_1)\gamma m) \Rightarrow y_3\gamma_1x_1 \in L(m, \gamma, A)$ for any $y_3 \in M$ and for any $\gamma_1 \in \Gamma$. Hence $L(m, \gamma, A)$ is a left ideal of M.

Analogously we can prove:

Proposition 3.6. Let A be a TIIFS with respect to both internal addition and external multiplication operations defined on M. Then for any $m \in M$ the set

 $R(m, \gamma, A) = \{x : x \in M \text{ such that } A(x) = A(m\gamma y), \text{ for some } y \in M\}$

is a right ideal of M.

Remark 3.7. If *M* is a commutative Γ -ring, then $L(m, \gamma, A) = R(m, \gamma, A), \forall m \in M$ and for all $\gamma \in \Gamma$.

Remark 3.8. We observe that for any $m \in M$ and $\gamma \in \Gamma$, the ideal $M\gamma m = \{x\gamma m : x \in M\}$ of M is contained in the left ideal $L(m, \gamma, A)$. Also for any $m \in M$ and $\gamma \in \Gamma$, the ideal $m\gamma M = \{m\gamma x : x \in M\}$ of M is contained in the right ideal $R(m, \gamma, A)$.

Definition 3.9. $L(m, \gamma, A)$ is called left A-principal ideal of M generated by m, γ and A, and $R(m, \gamma, A)$ is called right A-principal ideal of M generated by m, γ and A.

Definition 3.10. If $L(m, \gamma, A) = R(m, \gamma, A)$ for all $m \in M$ and $\gamma \in \Gamma$, then the ideal is denoted by $I(m, \gamma, A)$ and is called A-principal ideal of m generated by m, γ and A.

Definition 3.11. A Γ -ring M is called A-principal ideal Γ -ring if A is commutative and every ideal of M is an A-principal ideal generated by some $m \in M, \gamma \in \Gamma$ and A.

Definition 3.12. An element $a \in M$ with $A(a) \neq A(\theta)$ is called an A_{γ} -unit of M, where $\gamma \in \Gamma$ if there exists an element $a' \in M$ such that $A(a') \neq A(\theta)$ and $A(a\gamma a'\gamma m) = A(m) = A(a'\gamma a\gamma m)$ for all $m \in M$.

From the definition it follows that $\gamma \neq 0_{\Gamma}$. In a Γ -field every element $a \neq 0$ is an A_{γ} -unit for all $\gamma \neq 0_{\Gamma} \in \Gamma$.

Proposition 3.13. If a is an A_{γ} -unit of M, then $L(m, \gamma, A) = R(m, \gamma, A) = M$, for all $\gamma \in \Gamma$.

Proof. As a is an A_{γ} -unit of $M, \exists a' \in M$ such that $A(a') \neq A(\theta)$ and $A(a\gamma a'\gamma m) = A(m) = A(a'\gamma a\gamma m)$, for all $m \in M$. Let $x \in M$. Then $A(x) = A(a\gamma a'\gamma m) \Rightarrow x \in R(m, \gamma, A)$, since $a'\gamma x \in M$. Therefore, $M \subseteq R(m, \gamma, A)$. Similarly, $M \subseteq L(m, \gamma, A)$. Hence $L(m, \gamma, A) = R(m, \gamma, A) = M$ for $\gamma \in \Gamma, \gamma \neq 0_{\Gamma}$.

Proposition 3.14. Let A be a THFS with respect to external multiplication defined on M and $a, b \in M$. Then, $a \in L(b, \gamma, A)$ for some $\gamma \in \Gamma \Rightarrow L(a, \gamma, A) \subseteq L(b, \gamma, A)$ and $a \in R(b, \gamma, A)$ for some $\gamma \in \Gamma \Rightarrow R(a, \gamma, A) \subseteq R(b, \gamma, A)$.

Proof. Let $a \in L(b, \gamma, A)$, then $A(a) = A(x\gamma b)$, for some $x \in M$. Let $m \in L(a, \gamma, A)$. Then $A(m) = A(y\gamma a)$ for some $y \in M$.

Now $A(a) = A(x\gamma b) \Rightarrow A(y\gamma a) = A(y\gamma x\gamma b) \Rightarrow A(m) = A(y\gamma x\gamma b) \Rightarrow m \in L(b, \gamma, A).$ Hence $L(a, \gamma, A) \subseteq L(b, \gamma, A)$. Similarly, we can prove $R(a, \gamma, A) \subseteq R(b, \gamma, A)$.

Remark 3.15. We observe that $L(a, \gamma, A) = \{m \in M : A(m) = A(\theta)\} = M_A$, for any $\gamma \in \Gamma$.

Proposition 3.16. Let A be a THFS with respect to the external multiplication defined on M and $a, b \in M$. Then $A(a) = A(b) \Rightarrow L(a, \gamma, A) = L(b, \gamma, A)$; $R(a, \gamma, A) = R(b, \gamma, A)$.

Proof. Let A(a) = A(b). Suppose $m \in L(a, \gamma, A)$. Then $A(m) = A(x\gamma a)$ for some $x \in M$. Now A(a) = A(b) implies $A(x\gamma a) = A(x\gamma b)$. Hence, $A(m) = A(x\gamma b)$, so $m \in L(a, \gamma, A)$. Thus, $L(a, \gamma, A) \subseteq L(b, \gamma, A)$.

Similarly, we can show that $L(b, \gamma, A) \subseteq L(a, \gamma, A)$. Consequently, $L(a, \gamma, A) = L(b, \gamma, A)$. In a similar way, we can prove $R(a, \gamma, A) = R(b, \gamma, A)$.

In the next two sections, M is assumed to be a commutative Γ -ring with right and left unities and A is assumed to be a translational invariant intuitionistic fuzzy subset of M with respect to both internal addition and external multiplication defined on M satisfying A(x) = A(-x), $\forall x \in M$. Henceforth, the ideal generated by an element $a \in M$, $\gamma \in \Gamma$ with respect to A will be denoted by $I(a, \gamma, A)$ and it will be assumed that $a \in I(a, \gamma, A)$ for all $\gamma \in \Gamma$.

4 A-divisors of zero, A-associates

Definition 4.1. An element $a \in M$ with $A(a) \neq A(\theta)$ is said to be an A_{γ} -divisor of zero for $\gamma \in \Gamma, \gamma \neq 0_{\Gamma}$ if there exists some $b \in M$ with $A(b) \neq A(\theta)$ such that $A(a\gamma b) = A(\theta)$.

Henceforth, we shall assume that M contains no A_{γ} -divisor of zero.

Definition 4.2. Let $a, b \in M$ and $A(a) \neq A(\theta)$. We say that a divides b with respect to A and $\gamma \in \Gamma$ or a is an A_{γ} - divisor of b, written as $(a/b)_{A_{\gamma}}$, if there exists $c \in M$ such that $A(b) = A(a\gamma c)$.

Theorem 4.3. Let $a, b \in M$ be such that $A(a) \neq A(b)$ and $A(a) \neq A(\theta)$. Then $(a/b)_{A_{\gamma}}$ if and only if $I(b, \gamma, A) \subseteq I(a, \gamma, A)$, for $\gamma \in \Gamma$.

Proof. Suppose that $(a/b)_{A_{\gamma}}$. Then $A(b) = A(c\gamma a)$ for some $c \in M$, which implies that $b \in I(a, \gamma, A)$ and, therefore, $I(b, \gamma, A) \subseteq I(a, \gamma, A)$.

Conversely, let $I(b, \gamma, A) \subseteq I(a, \gamma, A)$. As $b \in I(b, \gamma, A) \subseteq I(a, \gamma, A)$ hence, $A(b) = A(c\gamma a)$, for some $c \in M$. Also, $A(a) \neq A(\theta)$. Hence $(a/b)_{A\gamma}$.

Definition 4.4. Let $a, b \in M \setminus M_A$ be such that $A(a) \neq A(b)$. We say that a and b are A-associates with respect to $\gamma \in \Gamma$ if $(a/b)_{A_{\gamma}}$ and $(b/a)_{A_{\gamma}}$.

Proposition 4.5. Let $a, b \in M \setminus M_A$. Then a, b are A-associates with respect to $\gamma \in \Gamma$ if and only if $A(a) = A(b\gamma u)$ for some A_{γ} -unit $u \in M$.

Proof. Let a, b be A-associates with respect to γ . Then $(a/b)_{A_{\gamma}}$ and $(b/a)_{A_{\gamma}}$. So $A(b) = A(a\gamma d)$ and $A(a) = A(b\gamma c)$ for some $c, d \in M$. Hence

 $\begin{array}{l} A(a) = A(b\gamma c) = A(a\gamma d\gamma c) \\ \Rightarrow A(a\gamma x) = A(a\gamma d\gamma c\gamma x) \\ \Rightarrow A(a\gamma x - a\gamma d\gamma c\gamma x) = A(\theta) \\ \Rightarrow A(a\gamma (x - d\gamma c\gamma x)) = A(\theta) \\ \Rightarrow A(x - d\gamma c\gamma x) = A(\theta); \text{ since } A(a) \neq A(\theta) \text{ and } R \text{ is without } A_{\gamma}\text{-divisor of zero.} \\ \Rightarrow A(x) = A(d\gamma c\gamma x), \text{ for all } x \in M \\ \Rightarrow c \text{ and } d \text{ are } A_{\gamma}\text{-units in } M. \text{ Hence } A(a) = A(b\gamma c), \text{ where } c \text{ is an } A_{\gamma}\text{-unit in } M. \\ \text{ Conversely, suppose that } A(a) = A(b\gamma u), \text{ for some } A_{\gamma}\text{-unit } u \text{ in } M. \\ \text{ Now, } A(a) = A(b\gamma u) \Rightarrow (b/a)_{A_{\gamma}}. \text{ Since } u \text{ is an } A_{\gamma}\text{-unit, there exists } v \in M \setminus M_A \text{ such that} \end{array}$

 $A(u\gamma v\gamma x) = A(x)$, for all $x \in M$. Hence $A(a) = A(b\gamma u) \Rightarrow A(a\gamma v) = A(b\gamma u\gamma v) = A(b)$. This shows that $(a/b)_{A_{\gamma}}$. Thus we find $(a/b)_{A_{\gamma}}$ and $(b/a)_{A_{\gamma}}$. Hence a, b are A_{γ} -associates. \Box

Corollary 4.6. Let $a, b \in M \setminus M_A$. If a, b are A_{γ} -associates, then $I(a, \gamma, A) = I(b, \gamma, A)$.

Proof. Suppose that a and b are A_{γ} -associates. Then by Proposition 4.5, $A(a) = A(u\gamma b)$, for some A_{γ} -unit $u \in M$. Then, $a \in I(b, \gamma, A)$, and so $I(a, \gamma, A) \subseteq I(b, \gamma, A)$. Since u is an A_{γ} -unit of M, there exists $v \in M \setminus M_A$ such that $A(u\gamma v\gamma x) = A(x)$, for all $x \in M$. Hence $A(b\gamma u\gamma v) = A(b)$. Thus $A(b) = A(a\gamma v)$, and so $b \in I(a, \gamma, A)$. Therefore $I(b, \gamma, A) \subseteq$ $I(a, \gamma, A)$. Consequently, $I(a, \gamma, A) = I(b, \gamma, A)$. \Box

Definition 4.7. Suppose $a \in M \setminus M_A$ and a is not an A_{γ} -unit for $\gamma \in \Gamma$. Then a is said to be A_{γ} -irreducible if $A(a) \neq A(b)$, $A(a) \neq A(c)$ and $A(a) = A(b\gamma c)$ implies either b or c is an A_{γ} -unit, where $b, c \in M$.

Definition 4.8. Suppose $a \in M \setminus M_A$ and a not an A_{γ} -unit for $\gamma \in \Gamma$. Then a is said to be A_{γ} -prime if $A(a) \neq A(b)$, $A(a) \neq A(c)$ and $(a/b\gamma_1 c)_{A_{\gamma}}$ implies $(a/b)_{A_{\gamma}}$ or $(a/c)_{A_{\gamma}}$, where $\gamma \in \Gamma$.

Proposition 4.9. In the Γ -ring M with no A_{γ} -divisors of zero, any A_{γ} -prime is A_{γ} -irreducible.

Proof. Let a be A_{γ} -prime. Suppose $A(a) \neq A(b)$, $A(a) \neq A(c)$ and $A(a) = A(b\gamma c)$ for $\gamma \in \Gamma$, $b, c \in M$. We can say that $(a/b\gamma c)_{A_{\gamma}}$. Since a is A_{γ} -prime, either $(a/b)_A$ or $(a/c)_A$.

Suppose $(a/b)_{A_{\gamma}}$. As $A(a) \neq A(b)$, $A(b) = A(a\gamma d)$ for some $d \in M$. Now

 $\begin{aligned} A(a) &= A(b\gamma c) = A(a\gamma d\gamma c) \\ \Rightarrow &A(a\gamma x) = A(a\gamma d\gamma c\gamma x), \text{ for } x \in M \\ \Rightarrow &A(a\gamma x - a\gamma d\gamma c\gamma x) = A(\theta) \Rightarrow A(a\gamma (x - d\gamma c\gamma x)) = A(\theta) \\ \Rightarrow &A(x - d\gamma c\gamma x) = A(\theta), \text{ since } A(a) \neq A(\theta) \text{ and } M \text{ is without } A_{\gamma}\text{-divisor of zero.} \\ \Rightarrow &A(x) = A(d\gamma c\gamma x), \text{ for all } x \\ \Rightarrow c \text{ is a } A_{\gamma}\text{-unit.} \end{aligned}$ Similarly, if $(a/c)_{A_{\gamma}}$ then we can show that b is an A_{γ} -unit. Hence a is A_{γ} -irreducible.

Theorem 4.10. Suppose that $a \in M \setminus M_A$ and a is not an A_{γ} -unit. Then a is A_{γ} -irreducible if and only if the ideal $I(a, \gamma, A)$ is maximal among all ideals $I(b, \gamma, A)$, where $b \in M$ and $A(a) \neq A(b)$.

Proof. (i) Suppose that a is A_{γ} -irreducible. Let $I(a, \gamma, A) \subseteq I(b, \gamma, A) \neq M$ for some $b \in M$ with $A(b) \neq A(a)$. Now $a \in I(a, \gamma, A) \subseteq I(b, \gamma, A)$ and so $A(a) = A(c\gamma b)$ for some $c \in M \setminus M_A$. Now, if A(a) = A(c), then $A(c) = A(c\gamma b)$, which implies $A(c\gamma x) = A(c\gamma b\gamma z)$, for all $x \in M$. Now M is without A_{γ} -divisor of zero and $A(c) \neq A(\theta)$, so $A(x) = A(b\gamma x)$ for all $x \in M$. Hence $I(b, \gamma, A) = M$, which is not the case. Hence $A(a) \neq A(c)$. As a is A_{γ} -irreducible, so either b is an A_{γ} -unit or c is an A_{γ} -unit. Since $I(b, \gamma, A) \neq M$ so by Proposition 4.9, we find that b is not an A_{γ} -unit. So there exists $u \in M \setminus M_A$ such that $A(c\gamma u\gamma x) = A(u\gamma c\gamma x) = A(x)$, for all $x \in M$. Thus $A(b) = A(c\gamma u\gamma b)$. Again, $A(a) = A(b\gamma c)$ implies $A(a\gamma u) = A(b)$. Hence $b \in I(a, \gamma, A)$ and so $I(b, \gamma, A) \subseteq I(a, \gamma, A)$. Consequently, $I(b, \gamma, A) = I(a, \gamma, A)$. Thus $I(a, \gamma, A)$ is maximal.

Conversely, assume that $I(a, \gamma, A)$ is maximal. Assume that $A(a) = A(c\gamma d)$ where $c, d \in M$ and $A(a) \neq A(c), A(a) \neq A(d)$. Then $a \in I(d, \gamma, A)$ and so $I(a, \gamma, A) \subseteq I(d, \gamma, A)$. Hence by our hypothesis either $I(a, \gamma, A) = I(d, \gamma, A)$, or $I(d, \gamma, A) = M$. If $I(a, \gamma, A) = I(d, \gamma, A)$, then $d \in I(d, \gamma, A) = I(a, \gamma, A)$. Therefore, $A(d) = A(m\gamma a)$, for some $m \in M$. This gives $A(c\gamma d) = A(c\gamma m\gamma a)$. Thus we have $A(a) = A(c\gamma m\gamma a)$ and so $A(a\gamma(x - c\gamma m\gamma x)) = A(\theta)$, for all $x \in M$. Since M is without A_{γ} -divisors of zero and $A(a) \neq A(\theta)$, we have $A(x) = A(c\gamma m\gamma x)$, for all $x \in M$. This shows that c is an A_{γ} -unit. If $I(d, \gamma, A) = M$, then $A(d) = A(d\gamma m)$, for some $m \in M$. Again $A(m) = A(d\gamma y)$, for some $y \in M$. Therefore $A(d) = A(d\gamma m) = A(d\gamma d\gamma y)$. Hence, $A(d\gamma x) = A(d\gamma d\gamma y\gamma x)$. Thus $A(x) = A(d\gamma y\gamma x)$. This shows that d is an A_{γ} -unit.

Theorem 4.11. Suppose that $a \in M \setminus M_A$ and a is not an A_{γ} -unit. Then a is A_{γ} -prime if and only if for $x, y \in M, \gamma_1 \in \Gamma$, $x\gamma_1 y \in I(a, \gamma, A)$ implies either that $x \in I(a, \gamma, A)$ or $y \in I(a, \gamma, A)$, where $A(a) \neq A(x)$, $A(a) \neq A(y)$.

Proof. Suppose that a is A_{γ} -prime and $x, y \in M$, $\gamma_1 \in \Gamma$, $x\gamma_1 y \in I(a, \gamma, A)$ implies either $x \in I(a, \gamma, A)$ or $y \in I(a, \gamma, A)$, where $A(a) \neq A(x)$, $A(a) \neq A(y)$. Then $A(x\gamma_1 y) = A(a\gamma m)$ for some $m \in M$, which shows that $(a/x\gamma_1 y)_{A_{\gamma}}$. As a is A_{γ} -prime, so either $(a/x)_{A_{\gamma}}$ or $(a/y)_{A_{\gamma}}$. If $(a/x)_{A_{\gamma}}$, then there exists $x_1 \in M$ such that $A(x) = A(a\gamma x_1)$ which implies $x \in I(a, \gamma, A)$. Similarly, if $(a/y)_{A_{\gamma}}$, then there exists $y_1 \in M$ such that $A(y) = A(a\gamma y_1)$, which implies $y \in I(a, \gamma, A)$.

Conversely, let for $x, y \in M, \gamma_1 \in \Gamma, x\gamma_1 y \in I(a, \gamma, A)$ implies either $x \in I(a, \gamma, A)$ or $y \in I(a, \gamma, A)$, where $A(a) \neq A(x), A(a) \neq A(y)$. We have to prove a is A_{γ} -prime. Let $(a/x\gamma_1 y)_{A_{\gamma}}$, where $x, y \in M, \gamma_1 \in \Gamma, A(a) \neq A(x), A(a) \neq A(y)$. $A(x\gamma_1 y) = A(a\gamma m)$, for some $m \in M$. Thus $x\gamma_1 y \in I(a, \gamma, A)$. Now from given condition either $x \in I(a, \gamma, A)$, or $y \in I(a, \gamma, A)$.

If $x \in I(a, \gamma, A)$, then $A(x) = A(a\gamma_1m_1)$ for some $m_1 \in M$. Thus $(a/x)_{A_{\gamma}}$. If $y \in I(a, \gamma, A)$, then $A(y) = A(a\gamma_1m_2)$ for some $m_2 \in M$. Thus $(a/y)_{A_{\gamma}}$. This proves that a is A_{γ} -prime.

5 Images and inverse images under Γ -ring homomorphisms

In this section, we discuss the invariance of translational invariance property of an intuitionistic fuzzy subset under Γ -ring homomorphism. We also study the algebraic nature of ideals under Γ -ring homomorphism.

Proposition 5.1. Let M and M' be Γ -rings and f be a Γ -homomorphism from M into M'. Let B be a THFS of M'. Then $f^{-1}(B)$ is a THFS of M.

Proof. Let *a*, *b* ∈ *M* and *f*⁻¹(*B*)(*a*) = *f*⁻¹(*B*)(*b*). Then *B*(*f*(*a*)) = *B*(*f*(*b*)). Let *x* ∈ *M* and *f*(*x*) = *y* ∈ *M'*. Since *B* is a TIIFS of *M'* and *B*(*f*(*a*)) = *B*(*f*(*b*)), we have *B*(*f*(*a*) + *y*) = *B*(*f*(*b*) + *y*) and *B*(*f*(*a*)γ*y*) = *B*(*f*(*b*)γ*y*), *B*(*y*γ*f*(*a*)) = *B*(*y*γ*f*(*b*)). Now *B*(*f*(*a*) + *y*) = *B*(*f*(*b*) + *y*) implies *B*(*f*(*a*) + *f*(*x*)) = *B*(*f*(*b*) + *f*(*x*)), and so *B*(*f*(*a* + *x*)) = *B*(*f*(*b* + *x*)). Hence *f*⁻¹(*B*)(*a* + *x*) = *f*⁻¹(*B*)(*b* + *x*). On the other hand, from *B*(*f*(*a*)γ*y*) = *B*(*f*(*b*)γ*y*) and *B*(*y*γ*f*(*a*)) = *B*(*y*γ*f*(*b*)), we get *B*(*f*(*a*)γ*f*(*x*)) = *B*(*f*(*b*)γ*f*(*x*)) and *B*(*f*(*x*)γ*f*(*a*)) = *B*(*f*(*b*)γ*f*(*x*)) and *B*(*f*(*x*γ*b*)). Thus, we have *f*⁻¹(*B*)(*a*γ*x*) = *f*⁻¹(*B*)(*b*γ*x*) and *f*⁻¹(*B*)(*x*γ*a*) = *f*⁻¹(*B*)(*x*γ*b*)∀*a*, *b*, *x* ∈ *M* and *γ* ∈ Γ. Consequently, *f*⁻¹(*B*) is TIIFS of *M*.

Proposition 5.2. Let M and M' be Γ -rings and f be a Γ -homomorphism from M onto M'. Let A be a TIIFS of M. If A is f-invariant, then f(A) is a TIIFS of M'.

Proof. Suppose that A is f-invariant. Then $\forall x, y \in M$, f(x) = f(y) implies A(x) = A(y).

As f is onto, for any $a \in M'$, $\mu_{f(A)}(a) = \sup\{\mu_A(x) : x \in M, f(x) = a\}$ and $\nu_{f(A)}(a) = \inf\{\nu_A(x) : x \in M, f(x) = a\}$. Let $x, y \in M$ and f(x) = a = f(y). Then f(x) = f(y), and so A(x) = A(y). So $\mu_{f(A)}(a) = \mu_A(x)$ and $\nu_{f(A)}(a) = \nu_A(x)$. Hence f(A)(a) = A(x), where $x \in M$ and f(x) = a. Thus $\forall a \in M'$, f(A)(a) = A(x), where $x \in M$ and f(x) = a. Now, let $a, b \in M'$, and f(A)(a) = f(A)(b). Then A(x) = A(y), where $x, y \in M$, and f(x) = a, f(y) = b. Let $c \in M'$ be such that f(z) = c, where $z \in M$. Then, a + c = f(x) + f(z) = f(x + z) and b + c = f(y) + f(z) = f(y + z). Hence f(A)(a + c) = A(x + z) and f(A)(b + c) = A(y + z). Again, for $\gamma \in \Gamma$, $a\gamma c = f(x)\gamma f(z) = f(x\gamma z)$, $c\gamma a = f(z)\gamma f(x) = f(z\gamma x)$, $b\gamma c = f(y)\gamma f(z) = f(y\gamma z)$, and $c\gamma b = f(z)\gamma f(y) = f(z\gamma y)$. Since A is translational invariant, A(x + z) = A(y + z), $A(x\gamma z) = A(y\gamma z)$, and $f(A)(c\gamma a) = f(A)(c\gamma b)$ for all $c \in M'$. Hence, f(A) is a THFS of M'.

Theorem 5.3. Let M and M' be Γ -rings and f be a Γ -homomorphism from M onto M' and A be a THFS of M. If A is f-invariant then,

$$f(I(a,\gamma,A)) = I(f(a),\gamma,f(A)), \forall a \in M, \gamma \in \Gamma.$$

Proof. Suppose that A is f-invariant. Let $y \in I(f(a), \gamma, f(A))$. Then $f(A)(y) = f(A)(s\gamma f(a))$ for some $s \in M'$. Since $y, s \in M'$ and f is onto, there exist $x, r \in M$ such that f(x) = y and f(r) = s. Thus $f(A)f(x) = f(A)(f(r)\gamma f(a)) = f(A)(f(r\gamma a))$. Since A is translational invariant, by what we have proved in Proposition 5.2, we get f(A)(f(x)) = A(x) and

 $f(A)(f(r\gamma a)) = A(r\gamma a)$. Thus $A(x) = A(r\gamma a)$, which implies $x \in I(a, \gamma, A)$, and so $f(x) \in f(I(a, \gamma, A))$, i.e., $y \in f(I(a, \gamma, A))$. Consequently, $I(f(a), \gamma, f(A)) \subseteq f(I(a, \gamma, A))$. Again, let $y \in f(I(a, \gamma, A))$. Then there exists $x \in I(a, \gamma, A)$ such that f(x) = y. Also, $x \in I(a, \gamma, A)$ implies $A(x) = A(a\gamma r)$ for some $r \in M$. Now,

$$\mu_{f(A)}(y) = Sup\{\mu_A(x) : f(x) = y\}$$

= $\mu_A(x)$, since A is f-invariant
= $\mu_A(a\gamma r)$.

Similarly, we can prove $\nu_{f(A)}(y) = \nu_A(a\gamma r)$. Hence $f(A)(y) = A(a\gamma r)$. Also, if f(r) = s, we have $f(A)(f(a)\gamma s) = f(A)(f(a)\gamma f(r)) = f(A)(f(a\gamma r)) = A(a\gamma r)$, since A is f-invariant so $f^{-1}f(a\gamma r) = a\gamma r$. Thus $f(A)(y) = f(A)(f(a)\gamma s)$ which implies $y \in I(f(a), \gamma, f(A))$. Hence $f(I(a, \gamma, A)) \subseteq I(f(a), \gamma, f(A))$, $a \in M$. Consequently, $f(I(a, \gamma, A)) = I(f(a), \gamma, f(A))$, for $a \in M, \gamma \in \Gamma$.

Proposition 5.4. Let M and M' be Γ -rings and f be a Γ -homomorphism from M onto M'. Let B be a THFS of M'. Let $a' \in M'$. Then $\forall a, b \in f^{-1}(a')$, $I(a, \gamma, f^{-1}(B)) = I(b, \gamma, f^{-1}(B))$; provided that $f^{-1}(a')$ contains more than one element.

Proof. Let $x \in I(a, \gamma, f^{-1}(B))$. Then $f^{-1}(B)(x) = f^{-1}(B)(r\gamma a)$ for some $r \in M$ and so $f^{-1}(B)(x) = B(f(r\gamma a))$. Thus $f^{-1}(B)(x) = B(f(a)\gamma f(r))$. Since $a, b \in f^{-1}(a')$, f(a) = f(b) = a' and hence we have $f^{-1}(B)(x) = B(f(b)\gamma f(r)) = B(f(b\gamma r)) =$ $f^{-1}(B)(b\gamma r)$. This shows that $x \in I(b, \gamma, f^{-1}(B))$. Hence $I(a, \gamma, f^{-1}(B)) \subseteq I(b, \gamma, f^{-1}(B))$. Now let $y \in I(b, \gamma, f^{-1}(B))$. Then $f^{-1}(B)(y) = f^{-1}(B)(b\gamma r')$ for some $r' \in M$, and so $f^{-1}(B)(y) = B(f(b\gamma r')) = B(f(b)\gamma f(r'))$, Since $a, b \in f^{-1}(a')$, f(a) = a' = f(b)and hence we have $f^{-1}(B)(y) = B(f(a)\gamma f(r')) = B(f(a\gamma r')) = f^{-1}(B)(a\gamma r')$. This shows that $y \in I(a, \gamma, f^{-1}(B))$. Hence, $I(b, \gamma, f^{-1}(B)) \subseteq I(a, \gamma, f^{-1}(B))$. Consequently, $I(a, \gamma, f^{-1}(B)) = I(b, \gamma, f^{-1}(B)) \forall a, b \in f^{-1}(a')$. \Box

Theorem 5.5. Let M and M' be Γ -rings and f be a Γ -isomorphism from M onto M'. Let B be a translational invariant intuitionistic fuzzy subset of M'. Then

$$I(f^{-1}(y), \gamma.f^{-1}(B)) = f^{-1}(I(y, \gamma, B)), \, \forall y \in M', \gamma \in \Gamma.$$

Proof. Let $x \in I(f^{-1}(y), \gamma, f^{-1}(B))$. Then

$$\begin{aligned} f^{-1}(B)(x) &= f^{-1}(B)(f^{-1}(y)\gamma r) \text{ for some } r \in M. \\ &= f^{-1}(B)(f^{-1}(y)\gamma f^{-1}(s)), \text{ where } s \in M' \text{ such that } f(r) = s. \\ \Rightarrow B(f(x)) &= f^{-1}(B)(f^{-1}(y\gamma s)), \text{ since } f \text{ is bijective} \\ &= B(f(f^{-1}(y\gamma s))) \\ &= B(y\gamma s). \end{aligned}$$

So, we have $f(x) \in I(y, \gamma, B)$, i.e., $x \in f^{-1}(I(y, \gamma, B))$. Hence $I(f^{-1}(y), \gamma, f^{-1}(B)) \subseteq f^{-1}(I(y, \gamma, B)), \forall y \in M'$. Again, let $a \in f^{-1}(I(y, \gamma, B))$ then $f(a) \in I(y, \gamma, B)) \Rightarrow$

 $\begin{array}{ll} B(f(a)) \ = \ B(y\gamma s), \ \text{for some } s \ \in \ M'. \ \text{Also, } y, s \ \in \ M' \ \text{and } f \ \text{is onto implies that there} \\ \text{exist } x, r \ \in \ M \ \text{such that } f(x) \ = \ y \ \text{and } f(r) \ = \ s. \ \text{Now, } B(f(a)) \ = \ B(y\gamma s) \ \Rightarrow \ B(f(a)) \ = \ B(f(x)\gamma f(r)) \ = \ B(f(x\gamma r)) \ \Rightarrow \ f^{-1}(B)(a) \ = \ f^{-1}(B)(x\gamma r) \ = \ f^{-1}(B)(f^{-1}(y)\gamma r) \ \Rightarrow \ a \ \in \ I(f^{-1}(y), \gamma, f^{-1}(B)). \ \text{Thus, } f^{-1}(I(y, \gamma, B)) \ \subseteq \ I(f^{-1}(y), \gamma, f^{-1}(B)), \ \forall y \ \in \ M'. \ \text{Consequently,} \\ I(f^{-1}(y), \gamma, f^{-1}(B)) \ = \ f^{-1}(I(y, \gamma, B)), \ \forall y \ \in \ M', \ \gamma \ \in \ \Gamma. \end{array}$

Theorem 5.6. Let M and M' be Γ -rings and f be a Γ -homomorphism from M onto M'. If A is f-invariant and TIIFS of M. If p is an A_{γ} -prime element of M, then, f(p) is a $f(A)_{\gamma}$ -prime element of M'.

Proof. Let f be a Γ -homomorphism from M onto M'. If A is f-invariant and TIIFS of M. Then by Proposition 5.2 f(A) is a TIIFS of M'. Suppose that p is an A_{γ} -prime element of M. Let $(f(p)/x\gamma y)_{f(A)\gamma}$, where $x, y \in M'$. Since f is onto, there exists $a, b \in M$ such that f(a) = x, f(b) = y.

Now $(f(p)/x\gamma y)_{f(A)\gamma} \Rightarrow \exists c \in M$ such that

$$\begin{split} f(A)(x\gamma y) &= f(A)(f(p)\gamma f(c)) \\ \Rightarrow f(A)(f(a)\gamma f(b)) &= f(A)(f(p\gamma c)) \\ \Rightarrow f(A)(f(a\gamma b)) &= f(A)(f(p\gamma c)) \\ \Rightarrow A(a\gamma b) &= A(p\gamma c) \text{ and so } (p/a\gamma b)_{A\gamma}. \end{split}$$

Since p is an A_{γ} -prime element of M, we have $(p/a)_{A_{\gamma}}$ or $(p/b)_{A_{\gamma}}$ $\Rightarrow A(a) = A(p\gamma m)$ or $A(b) = A(p\gamma n)$, for some $m, n \in M, \forall \gamma \in \Gamma$ $\Rightarrow f(A)(f(a)) = f(A)(f(p\gamma m))$ or $f(A)(f(b)) = f(A)(f(p\gamma n))$ $\Rightarrow f(A)(f(a)) = f(A)(f(p)\gamma f(m))$ or $f(A)(f(b)) = f(A)(f(p)\gamma f(n))$ $\Rightarrow (f(p)/f(a))_{f(A)}$ or $(f(p)/f(b))_{f(A)}$. Thus, f(p) is a f(A)-prime element of M'.

Theorem 5.7. Let f be a homomorphism of a Γ -ring M onto a Γ -ring M'. Let A be an f-invariant and TIIFS of M. If p is an A_{γ} -prime element of M, then the homomorphic image of $I(p, \gamma, A)$ is a prime ideal of M'.

Proof. Let f be a Γ -homomorphism from M onto M'. If A is f-invariant and TIIFS of M, then by Proposition 5.2 f(A) is TIIFS of M'.

By Theorem 4.11 $I(p, \gamma, A)$ is a prime ideal of M.

- By Theorem 5.3 $f(I(p, \gamma, A)) = I(f(p), \gamma, f(A)).$
- By Theorem 5.6 f(p) is a $f(A)_{\gamma}$ -prime element of M'

By Theorem 4.11 $f(I(p, \gamma, A))$ is a prime ideal of M'.

Acknowledgements

The first author would like to thank Lovely Professional University Phagwara for providing the opportunity to do research work.

References

- [1] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- [2] Barnes, W. E. (1966). On the Γ -ring of Nobusawa. *Pacific Journal of Mathematics*, 18, 411–422.
- [3] Bhargavi, Y. (2020). A study on translational invariant vague set of a Γ-semiring. Afrika Matematika, DOI: 10.1007/s13370-020-00794-1.
- [4] Biswas, R. (1989). Intuitionistic fuzzy subgroup. *Mathematical Forum*, X, 37–46.
- [5] Burton, D. M. (1970). A first course in rings and ideals. *Addison-Wesley*, Available online: http://en.b-ok.cc/book/5309376/04beda.
- [6] Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic fuzzy ideals of a ring. *Journal of the Korea Society of Mathematical Education, Series B*, 12(3), 193–209.
- [7] Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. *Honam Mathematical Journal*, 25(1), 19–41.
- [8] Kim, K.H., Jun, Y.B., & Ozturk, M. A. (2001). Intuitionistic fuzzy ideal of Γ-rings. Scientiae Mathematicae Japonicae, 54, 51–60.
- [9] Nobusawa, N. (1964). On a generalization of the Ring Theory. Osaka Journal of Mathematics, 1, 81–89.
- [10] Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of intuitionistic fuzzy ideal of Γ -rings, *Thai Journal of Mathematics*, 9(2), 305–318.
- [11] Ravisanka, T. S., & Shukla, U. S. (1979). Structure of Γ-rings, Pacific Journal of Mathematics, 80(2), 537–559.
- [12] Ray, A. K. (1999). Quotient group of a group generated by a subgroup and a fuzzy subset. *Journal of Fuzzy Mathematics*, 7(2), 459–463.
- [13] Ray, A. K., & Ali, T. (2002). Ideals and divisibility in a ring with respect to a fuzzy subset. *Novi Sad Journal of Mathematics*, 32(2), 67–75.
- [14] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.