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1 Introduction

The notion of a Γ-ring was introduced by N. Nobusawa [9] as more general than the notion of a
ring. W. E. Barnes [2] weakened slightly the conditions in the definition of Γ-rings in the sense
of N. Nobusawa. The structure of Γ-rings can be found in [11]. The notion of intuitionistic
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fuzzy set was introduced by K. T. Atanassov [1] to generalize the notion of fuzzy set given by
L. A. Zadeh [14]. R. Biswas [4] was the first one to introduce the concept of intuitionistic fuzzy
subgroup of a group and established many important properties. The notion of intuitionistic fuzzy
subring and ideal in a ring was introduced by K. Hur et al. in [6, 7]. K. H. Kim et al. in [8] have
studied intuitionistic fuzzy ideal of Γ-rings which was further studied by N. Palaniappan et al.
in [10]. A. K. Ray [12] introduced the concept of translational invariant fuzzy subset in a ring.
A. K. Ray and T. Ali in [13] also studied ideals and divisibility in a ring with respect to a fuzzy
subset. Y. Bhargavi [3] studied the translational invariant vague set of a Γ-semiring. The purpose
of this paper is to generalize some of the classical results of ring theory using the notion of a
translational invariant intuitionistic fuzzy subset (TIIFS) of a Γ-ring.

2 Preliminaries

In this section, we list some basic concepts and definitions on Γ-rings theory and intuitionistic
fuzzy sets theory, which are necessary for the better understanding of the paper.

Definition 2.1 ([2]). If (M,+) and (Γ,+) are additive Abelian groups, thenM is called a Γ-ring if
there exists a mapping f : M×Γ×M →M , where f(x, α, y) is denoted by xαy, x, y ∈M,γ ∈ Γ

satisfying the following conditions:

(1) xαy ∈M .

(2) (x+ y)αz = xαz + yαz, x(α + β)y = xαy + xβy, xα(y + z) = xαy + xαz.

(3) (xαy)βz = xα(yβz). for all x, y, z ∈M , and γ ∈ Γ.

These conditions are further strengthened by defining another function g : Γ × M × Γ → Γ,
where g(α, x, β) is denoted by αxβ, x ∈M , α, β ∈ Γ, satisfying the following conditions for all
x, y, z ∈M and for all α, β, γ ∈ Γ,

(1
′
) xαy ∈M , αxβ ∈ Γ.

(2
′
) (x+ y)αz = xαz + yαz, x(α + β)y = xαy + xβy, xα(y + z) = xαy + xαz.

(3
′
) (xαy)βz = xα(yβz).

(4
′
) xαy = 0M for all x, y ∈M implies α = 0Γ.

We then have a Γ-ring in the sense of Nobusawa [9].

Definition 2.2 ([2, 10]). A subset N of a Γ-ring M is a left (right) ideal of M if N is an additive
subgroup of M and

MΓN = {xαy|x ∈M,α ∈ Γ, y ∈ N}, (NΓM)

is contained in N . If N is both a left and a right ideal, then N is a two-sided ideal, or simply an
ideal of M .
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Definition 2.3 ([13]). A Γ-ring M is said to be a commutative Γ-ring if xγy = yγx, ∀x, y ∈ M,

γ ∈ Γ.

Definition 2.4 ([13]). LetM be a Γ-ring. An element e ∈M is said to be unity if for each x ∈M
there exists γ ∈ Γ such that xγe = eγx = x.

Definition 2.5 ([13]). An ideal P of a Γ-ringM is said to be prime ideal ofM if for any x, y ∈M,

γ ∈ Γ, xγy ∈ P implies that x ∈ P or y ∈ P .

Definition 2.6 ( [2, 13]). Let M and M
′ be two Γ-rings. Then f : M → M

′ is called a
Γ-homomorphism if

• f(x+ y) = f(x) + f(y)

• f(xγy) = f(x)γf(y), for all x, y ∈M,γ ∈ Γ.

Definition 2.7 ([1]). An intuitionistic fuzzy setA inX can be represented as an object of the form
A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA : X → [0, 1] and νA : X → [0, 1]

denote the degree of membership (namely µA(x)) and the degree of non-membership (namely
νA(x)) of each element x ∈ X to A, respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Remark 2.8 ([1]). (i) When µA(x) + νA(x) = 1, i.e., νA(x) = 1− µA(x) = µAc(x), then A is
called a fuzzy set.
(ii) An intuitionistic fuzzy set (IFS) A = {〈x, µA(x), νA(x)〉 : x ∈ X} is shortly denoted by
A(x) = (µA(x), νA(x)), for all x ∈ X .

Proposition 2.9 ([1]). If A,B be two intuitionistic fuzzy sets of X , then

(i) A ⊆ B ⇔ µA(x) ≤ µB(x) and νA(x) ≥ νB(x),∀x ∈ X;

(ii) A = B ⇔ A ⊆ B and B ⊆ A, i.e., A(x) = B(x), for all x ∈ X .

Further if f : X → Y is a mapping and A,B be respectively IFS of X and Y , then the image
f(A) is an IFS of Y defined as µf(A)(y) = sup{µA(x) : f(x) = y}, νf(A)(y) = inf{νA(x) :

f(x) = y}, for all y ∈ Y and the inverse image f−1(B) is an IFS of X defined as µf−1(B)(x) =

µB(f(x)), νf−1(B)(x) = νB(f(x)), for all x ∈ X , i.e., f−1(B)(x) = B(f(x)), for all x ∈ X .
Also the IFS A of X is said to be f -invariant if for any x, y ∈ X , whenever f(x) = f(y) implies
A(x) = A(y).

3 Translational invariant intuitionistic fuzzy subset
of a Γ-ring

Throughout this section, M is a Γ-ring with unities and the zero element θ.

Definition 3.1. Let A be an intuitionistic fuzzy subset of M . A is called a left translational
invariant intuitionistic fuzzy subset with respect to the internal addition if A(x) = A(y) implies
that A(x + m) = A(y + m), for all x, y,m ∈ M . Again A is called a left translational invariant
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intuitionistic fuzzy subset with respect to the external multiplication if A(x) = A(y) implies that
A(mγx) = A(mγy), for all x, y,m ∈ M and for all γ ∈ Γ. Similarly, we can define the notion
of right translational invariant intuitionistic fuzzy subset with respect to the operation (addition,
multiplication) in M .

Remark 3.2. An IFS A is said to be commutative under internal addition (or external
multiplication) on M if A(x + y) = A(y + x) (or A(xγy) = A(yγx)), for all x, y ∈ M,γ ∈ Γ.
Therefore, when A is commutative, then the two notion coincides. In this case, we say that A is
a translational invariant intuitionistic fuzzy subset (TIIFS) of M with respect to the operation +

(or ×).

Example 3.3. Consider the Γ-ring M , where M = Z the ring of integers and Γ = 2Z, the ring
of even integers and xγy denotes the usual product of integers x, γ, y. Let A = (µA, νA) be an
intuitionistic fuzzy subset of M defined by

µA(x) =

1, if x is an even integer

0.5, if x is an odd integer
; νA(x) =

0, if x is an even integer

0.3, if x is an odd integer.

Then it is easy to verify that A is an TIIFS of M with respect to both the operation + and ×.

Example 3.4. Consider the Γ-ring M , where M = {[aij] : aij ∈ Z2, i = 1, j = 1, 2}, the set of
(1× 2) matrices whose entries are from Z2 and Γ = {[aij] : aij ∈ Z2, i = 1, 2, j = 1}, the set of
(2× 1) matrices whose entries are from Z2. Let A = (µA, νA) be an intuitionistic fuzzy subset of
R defined by

µA(aij) =


0.7, if a11 = a12 = 0

0.7, if a11 = 1, a12 = 0

0.3, if a11 = 0, a12 = 1

0.3, if a11 = a12 = 1.

; νA(aij) =


0.2, if a11 = a12 = 0

0.2, if a11 = 1, a12 = 0

0.5, if a11 = 0, a12 = 1

0.5, if a11 = a12 = 1.

Then it is easy to verify that A is an TIIFS of M with respect to both the operation addition of
matrices and multiplication of matrices defined on M .

From this point onwards, every intuitionistic fuzzy subset A of a Γ-ring M satisfies the
property A(−x) = A(x), for all x ∈M .

Proposition 3.5. Let A be a TIIFS with respect to both internal addition and external
multiplication operations defined on M . Then for any m ∈M the set

L(m, γ,A) = {x : x ∈M such that A(x) = A(yγm), for some y ∈M}

is a left ideal of M .

Proof. Clearly L(m, γ,A) 6= ∅, since θ ∈ L(m, γ,A) as A(θ) = A(θγm). Let x1, x2 ∈
L(m, γ,A). Then A(x1) = A(y1γm) and A(x2) = A(y2γm), for some y1, y2 ∈M . Now

A(x1) = A(y1γm)⇒ A(x1 − x2) = A(y1γm− x2) = A(x2 − y1γm) (i)

and

A(x2) = A(y2γm)⇒ A(x2 − x1) = A(y2γm− x1) = A(x1 − y2γm) (ii)
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From (i) and (ii) we getA(x1−y2γm) = A(x2−y1γm)⇒ A(x1−x2) = A(y1γm−y2γm) =

A((y1 − y2)γm). Thus, x1 − x2 ∈ L(m, γ,A), since (y1 − y2) ∈M .
Also, for any y3 ∈ M and γ1 ∈ Γ, we have A(y3γ1x1) = A(y3γ1(y1γm)) = A((y3γ1y1)γm) ⇒
y3γ1x1 ∈ L(m, γ,A) for any y3 ∈ M and for any γ1 ∈ Γ. Hence L(m, γ,A) is a left ideal
of M .

Analogously we can prove:

Proposition 3.6. Let A be a TIIFS with respect to both internal addition and external
multiplication operations defined on M . Then for any m ∈M the set

R(m, γ,A) = {x : x ∈M such that A(x) = A(mγy), for some y ∈M}

is a right ideal of M .

Remark 3.7. If M is a commutative Γ-ring, then L(m, γ,A) = R(m, γ,A),∀m ∈M and for all
γ ∈ Γ.

Remark 3.8. We observe that for any m ∈ M and γ ∈ Γ, the ideal Mγm = {xγm : x ∈ M}
of M is contained in the left ideal L(m, γ,A). Also for any m ∈ M and γ ∈ Γ, the ideal
mγM = {mγx : x ∈M} of M is contained in the right ideal R(m, γ,A).

Definition 3.9. L(m, γ,A) is called left A-principal ideal of M generated by m, γ and A, and
R(m, γ,A) is called right A-principal ideal of M generated by m, γ and A.

Definition 3.10. If L(m, γ,A) = R(m, γ,A) for all m ∈M and γ ∈ Γ, then the ideal is denoted
by I(m, γ,A) and is called A-principal ideal of m generated by m, γ and A.

Definition 3.11. A Γ-ring M is called A-principal ideal Γ-ring if A is commutative and every
ideal of M is an A-principal ideal generated by some m ∈M,γ ∈ Γ and A.

Definition 3.12. An element a ∈M with A(a) 6= A(θ) is called an Aγ-unit of M , where γ ∈ Γ if
there exists an element a′ ∈ M such that A(a

′
) 6= A(θ) and A(aγa

′
γm) = A(m) = A(a

′
γaγm)

for all m ∈M .

From the definition it follows that γ 6= 0Γ. In a Γ-field every element a(6= θ) is an Aγ-unit for
all γ(6= 0Γ) ∈ Γ.

Proposition 3.13. If a is an Aγ-unit of M , then L(m, γ,A) = R(m, γ,A) = M , for all γ ∈ Γ.

Proof. As a is an Aγ-unit of M,∃ a′ ∈ M such that A(a
′
) 6= A(θ) and A(aγa

′
γm) = A(m) =

A(a
′
γaγm), for all m ∈ M . Let x ∈ M . Then A(x) = A(aγa

′
γm) ⇒ x ∈ R(m, γ,A), since

a
′
γx ∈ M . Therefore, M ⊆ R(m, γ,A). Similarly, M ⊆ L(m, γ,A). Hence L(m, γ,A) =

R(m, γ,A) = M for γ ∈ Γ, γ 6= 0Γ.

Proposition 3.14. Let A be a TIIFS with respect to external multiplication defined on M and
a, b ∈ M . Then, a ∈ L(b, γ, A) for some γ ∈ Γ ⇒ L(a, γ, A) ⊆ L(b, γ, A) and a ∈ R(b, γ, A)

for some γ ∈ Γ⇒ R(a, γ, A) ⊆ R(b, γ, A).
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Proof. Let a ∈ L(b, γ, A), then A(a) = A(xγb), for some x ∈ M . Let m ∈ L(a, γ, A). Then
A(m) = A(yγa) for some y ∈M .

Now A(a) = A(xγb)⇒ A(yγa) = A(yγxγb)⇒ A(m) = A(yγxγb)⇒ m ∈ L(b, γ, A).
Hence L(a, γ, A) ⊆ L(b, γ, A). Similarly, we can prove R(a, γ, A) ⊆ R(b, γ, A).

Remark 3.15. We observe that L(a, γ, A) = {m ∈M : A(m) = A(θ)} = MA, for any γ ∈ Γ.

Proposition 3.16. Let A be a TIIFS with respect to the external multiplication defined on M and
a, b ∈M . Then A(a) = A(b)⇒ L(a, γ, A) = L(b, γ, A); R(a, γ, A) = R(b, γ, A).

Proof. Let A(a) = A(b). Suppose m ∈ L(a, γ, A). Then A(m) = A(xγa) for some x ∈ M .
Now A(a) = A(b) implies A(xγa) = A(xγb). Hence, A(m) = A(xγb, so m ∈ L(a, γ, A).
Thus, L(a, γ, A) ⊆ L(b, γ, A).

Similarly, we can show that L(b, γ, A) ⊆ L(a, γ, A). Consequently, L(a, γ, A) = L(b, γ, A).
In a similar way, we can prove R(a, γ, A) = R(b, γ, A).

In the next two sections, M is assumed to be a commutative Γ-ring with right and left unities
and A is assumed to be a translational invariant intuitionistic fuzzy subset of M with respect
to both internal addition and external multiplication defined on M satisfying A(x) = A(−x),

∀x ∈ M . Henceforth, the ideal generated by an element a ∈ M , γ ∈ Γ with respect to A will be
denoted by I(a, γ, A) and it will be assumed that a ∈ I(a, γ, A) for all γ ∈ Γ.

4 A-divisors of zero, A-associates

Definition 4.1. An element a ∈ M with A(a) 6= A(θ) is said to be an Aγ-divisor of zero for
γ ∈ Γ, γ 6= 0Γ if there exists some b ∈M with A(b) 6= A(θ) such that A(aγb) = A(θ).

Henceforth, we shall assume that M contains no Aγ-divisor of zero.

Definition 4.2. Let a, b ∈ M and A(a) 6= A(θ). We say that a divides b with respect to A

and γ ∈ Γ or a is an Aγ- divisor of b, written as (a/b)Aγ , if there exists c ∈ M such that
A(b) = A(aγc).

Theorem 4.3. Let a, b ∈ M be such that A(a) 6= A(b) and A(a) 6= A(θ). Then (a/b)Aγ if and
only if I(b, γ, A) ⊆ I(a, γ, A), for γ ∈ Γ.

Proof. Suppose that (a/b)Aγ . Then A(b) = A(cγa) for some c ∈ M , which implies that b ∈
I(a, γ, A) and, therefore, I(b, γ, A) ⊆ I(a, γ, A).

Conversely, let I(b, γ, A) ⊆ I(a, γ, A). As b ∈ I(b, γ, A) ⊆ I(a, γ, A) hence, A(b) =

A(cγa), for some c ∈M . Also, A(a) 6= A(θ). Hence (a/b)Aγ .

Definition 4.4. Let a, b ∈M\MA be such thatA(a) 6= A(b). We say that a and b areA-associates
with respect to γ ∈ Γ if (a/b)Aγ and (b/a)Aγ .

Proposition 4.5. Let a, b ∈M\MA. Then a, b are A-associates with respect to γ ∈ Γ if and only
if A(a) = A(bγu) for some Aγ-unit u ∈M .
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Proof. Let a, b be A-associates with respect to γ. Then (a/b)Aγ and (b/a)Aγ . So A(b) = A(aγd)

and A(a) = A(bγc) for some c, d ∈M . Hence
A(a) = A(bγc) = A(aγdγc)

⇒ A(aγx) = A(aγdγcγx)

⇒ A(aγx− aγdγcγx) = A(θ)

⇒ A(aγ(x− dγcγx)) = A(θ)

⇒ A(x− dγcγx) = A(θ); since A(a) 6= A(θ) and R is without Aγ-divisor of zero.
⇒ A(x) = A(dγcγx), for all x ∈M
⇒ c and d are Aγ-units in M . Hence A(a) = A(bγc), where c is an Aγ-unit in M .

Conversely, suppose that A(a) = A(bγu), for some Aγ-unit u in M .
Now, A(a) = A(bγu) ⇒ (b/a)Aγ . Since u is an Aγ-unit, there exists v ∈ M\MA such that

A(uγvγx) = A(x), for all x ∈ M . Hence A(a) = A(bγu) ⇒ A(aγv) = A(bγuγv) = A(b).
This shows that (a/b)Aγ . Thus we find (a/b)Aγ and (b/a)Aγ . Hence a, b are Aγ-associates.

Corollary 4.6. Let a, b ∈M\MA. If a, b are Aγ-associates, then I(a, γ, A) = I(b, γ, A).

Proof. Suppose that a and b are Aγ-associates. Then by Proposition 4.5, A(a) = A(uγb), for
some Aγ-unit u ∈ M . Then, a ∈ I(b, γ, A), and so I(a, γ, A) ⊆ I(b, γ, A). Since u is an
Aγ-unit of M , there exists v ∈ M\MA such that A(uγvγx) = A(x), for all x ∈ M . Hence
A(bγuγv) = A(b). Thus A(b) = A(aγv), and so b ∈ I(a, γ, A). Therefore I(b, γ, A) ⊆
I(a, γ, A). Consequently, I(a, γ, A) = I(b, γ, A).

Definition 4.7. Suppose a ∈ M\MA and a is not an Aγ-unit for γ ∈ Γ. Then a is said to be
Aγ-irreducible if A(a) 6= A(b), A(a) 6= A(c) and A(a) = A(bγc) implies either b or c is an
Aγ-unit, where b, c ∈M .

Definition 4.8. Suppose a ∈ M\MA and a not an Aγ-unit for γ ∈ Γ. Then a is said to be
Aγ-prime if A(a) 6= A(b), A(a) 6= A(c) and (a/bγ1c)Aγ implies (a/b)Aγ or (a/c)Aγ , where
γ ∈ Γ.

Proposition 4.9. In the Γ-ring M with no Aγ-divisors of zero, any Aγ-prime is Aγ-irreducible.

Proof. Let a be Aγ-prime. Suppose A(a) 6= A(b), A(a) 6= A(c) and A(a) = A(bγc) for γ ∈ Γ,
b, c ∈M . We can say that (a/bγc)Aγ . Since a is Aγ-prime, either (a/b)A or (a/c)A.

Suppose (a/b)Aγ . As A(a) 6= A(b), A(b) = A(aγd) for some d ∈M . Now
A(a) = A(bγc) = A(aγdγc)

⇒ A(aγx) = A(aγdγcγx), for x ∈M
⇒ A(aγx− aγdγcγx) = A(θ)⇒ A(aγ(x− dγcγx)) = A(θ)

⇒ A(x− dγcγx) = A(θ), since A(a) 6= A(θ) and M is without Aγ-divisor of zero.
⇒ A(x) = A(dγcγx), for all x
⇒ c is a Aγ-unit.
Similarly, if (a/c)Aγ then we can show that b is an Aγ-unit. Hence a is Aγ-irreducible.

Theorem 4.10. Suppose that a ∈ M\MA and a is not an Aγ-unit. Then a is Aγ-irreducible
if and only if the ideal I(a, γ, A) is maximal among all ideals I(b, γ, A), where b ∈ M and
A(a) 6= A(b).

17



Proof. (i) Suppose that a is Aγ-irreducible. Let I(a, γ, A) ⊆ I(b, γ, A) 6= M for some b ∈ M
with A(b) 6= A(a). Now a ∈ I(a, γ, A) ⊆ I(b, γ, A) and so A(a) = A(cγb) for some c ∈
M\MA. Now, if A(a) = A(c), then A(c) = A(cγb), which implies A(cγx) = A(cγbγz), for all
x ∈ M . Now M is without Aγ-divisor of zero and A(c) 6= A(θ), so A(x) = A(bγx) for all x ∈
M . Hence I(b, γ, A) = M , which is not the case. Hence A(a) 6= A(c). As a is Aγ-irreducible,
so either b is an Aγ-unit or c is an Aγ-unit. Since I(b, γ, A) 6= M so by Proposition 4.9, we find
that b is not an Aγ-unit. So there exists u ∈ M\MA such that A(cγuγx) = A(uγcγx) = A(x),
for all x ∈ M . Thus A(b) = A(cγuγb). Again, A(a) = A(bγc) implies A(aγu) = A(b). Hence
b ∈ I(a, γ, A) and so I(b, γ, A) ⊆ I(a, γ, A). Consequently, I(b, γ, A) = I(a, γ, A). Thus
I(a, γ, A) is maximal.

Conversely, assume that I(a, γ, A) is maximal. Assume that A(a) = A(cγd) where c, d ∈M
and A(a) 6= A(c), A(a) 6= A(d). Then a ∈ I(d, γ, A) and so I(a, γ, A) ⊆ I(d, γ, A). Hence
by our hypothesis either I(a, γ, A) = I(d, γ, A), or I(d, γ, A) = M . If I(a, γ, A) = I(d, γ, A),
then d ∈ I(d, γ, A) = I(a, γ, A). Therefore, A(d) = A(mγa), for some m ∈ M . This gives
A(cγd) = A(cγmγa). Thus we have A(a) = A(cγmγa) and so A(aγ(x − cγmγx)) = A(θ),
for all x ∈ M . Since M is without Aγ-divisors of zero and A(a) 6= A(θ), we have
A(x) = A(cγmγx), for all x ∈ M . This shows that c is an Aγ-unit. If I(d, γ, A) = M ,
then A(d) = A(dγm), for some m ∈ M . Again A(m) = A(dγy), for some y ∈ M . Therefore
A(d) = A(dγm) = A(dγdγy). Hence, A(dγx) = A(dγdγyγx). Thus A(x) = A(dγyγx). This
shows that d is an Aγ-unit.

Theorem 4.11. Suppose that a ∈M\MA and a is not an Aγ-unit. Then a is Aγ-prime if and only
if for x, y ∈ M,γ1 ∈ Γ, xγ1y ∈ I(a, γ, A) implies either that x ∈ I(a, γ, A) or y ∈ I(a, γ, A),
where A(a) 6= A(x), A(a) 6= A(y).

Proof. Suppose that a is Aγ-prime and x, y ∈ M , γ1 ∈ Γ, xγ1y ∈ I(a, γ, A) implies either
x ∈ I(a, γ, A) or y ∈ I(a, γ, A), where A(a) 6= A(x), A(a) 6= A(y). Then A(xγ1y) = A(aγm)

for some m ∈M , which shows that (a/xγ1y)Aγ . As a is Aγ-prime, so either (a/x)Aγ or (a/y)Aγ .
If (a/x)Aγ , then there exists x1 ∈ M such that A(x) = A(aγx1) which implies x ∈ I(a, γ, A).
Similarly, if (a/y)Aγ , then there exists y1 ∈ M such that A(y) = A(aγy1), which implies y ∈
I(a, γ, A).

Conversely, let for x, y ∈ M,γ1 ∈ Γ, xγ1y ∈ I(a, γ, A) implies either x ∈ I(a, γ, A) or
y ∈ I(a, γ, A), where A(a) 6= A(x), A(a) 6= A(y). We have to prove a is Aγ-prime. Let
(a/xγ1y)Aγ , where x, y ∈ M,γ1 ∈ Γ, A(a) 6= A(x), A(a) 6= A(y). A(xγ1y) = A(aγm), for
some m ∈ M . Thus xγ1y ∈ I(a, γ, A). Now from given condition either x ∈ I(a, γ, A), or
y ∈ I(a, γ, A).

If x ∈ I(a, γ, A), then A(x) = A(aγ1m1) for some m1 ∈M . Thus (a/x)Aγ .
If y ∈ I(a, γ, A), then A(y) = A(aγ1m2) for some m2 ∈M . Thus (a/y)Aγ .
This proves that a is Aγ-prime.
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5 Images and inverse images under Γ-ring homomorphisms

In this section, we discuss the invariance of translational invariance property of an intuitionistic
fuzzy subset under Γ-ring homomorphism. We also study the algebraic nature of ideals under
Γ-ring homomorphism.

Proposition 5.1. Let M and M
′

be Γ-rings and f be a Γ-homomorphism from M into M
′
. Let

B be a TIIFS of M
′
. Then f−1(B) is a TIIFS of M .

Proof. Let a, b ∈ M and f−1(B)(a) = f−1(B)(b). Then B(f(a)) = B(f(b)). Let x ∈ M and
f(x) = y ∈ M ′ . Since B is a TIIFS of M ′ and B(f(a)) = B(f(b)), we have B(f(a) + y) =

B(f(b) + y) and B(f(a)γy) = B(f(b)γy), B(yγf(a)) = B(yγf(b)). Now B(f(a) + y) =

B(f(b) + y) implies B(f(a) + f(x)) = B(f(b) + f(x)), and so B(f(a + x)) = B(f(b + x)).
Hence f−1(B)(a + x) = f−1(B)(b + x). On the other hand, from B(f(a)γy) = B(f(b)γy)

and B(yγf(a)) = B(yγf(b)), we get B(f(a)γf(x)) = B(f(b)γf(x)) and B(f(x)γf(a)) =

B(f(x)γf(b)), and so B(f(aγx)) = B(f(bγx)) and B(f(xγa)) = B(f(xγb)). Thus, we have
f−1(B)(aγx) = f−1(B)(bγx) and f−1(B)(xγa) = f−1(B)(xγb)∀a, b, x ∈ M and γ ∈ Γ.
Consequently, f−1(B) is TIIFS of M .

Proposition 5.2. Let M and M
′

be Γ-rings and f be a Γ-homomorphism from M onto M
′
. Let

A be a TIIFS of M . If A is f -invariant, then f(A) is a TIIFS of M
′
.

Proof. Suppose that A is f -invariant. Then ∀x, y ∈M , f(x) = f(y) implies A(x) = A(y).
As f is onto, for any a ∈ M ′ , µf(A)(a) = sup{µA(x) : x ∈ M, f(x) = a} and νf(A)(a) =

inf{νA(x) : x ∈ M, f(x) = a}. Let x, y ∈ M and f(x) = a = f(y). Then f(x) = f(y), and
so A(x) = A(y). So µf(A)(a) = µA(x) and νf(A)(a) = νA(x). Hence f(A)(a) = A(x), where
x ∈ M and f(x) = a. Thus ∀a ∈ M ′ , f(A)(a) = A(x), where x ∈ M and f(x) = a. Now, let
a, b ∈ M ′ , and f(A)(a) = f(A)(b). Then A(x) = A(y), where x, y ∈ M , and f(x) = a, f(y) =

b. Let c ∈ M ′ be such that f(z) = c, where z ∈ M . Then, a + c = f(x) + f(z) = f(x + z)

and b + c = f(y) + f(z) = f(y + z). Hence f(A)(a + c) = A(x + z) and f(A)(b + c) =

A(y + z). Again, for γ ∈ Γ, aγc = f(x)γf(z) = f(xγz), cγa = f(z)γf(x) = f(zγx),
bγc = f(y)γf(z) = f(yγz), and cγb = f(z)γf(y) = f(zγy). Since A is translational invariant,
A(x + z) = A(y + z), A(xγz) = A(yγz), and A(zγx) = A(zγy). Hence, f(A)(a + c) =

f(A)(b+ c), f(A)(aγc) = f(A)(bγc), and f(A)(cγa) = f(A)(cγb) for all c ∈M ′ . Hence, f(A)

is a TIIFS of M ′ .

Theorem 5.3. Let M and M
′

be Γ-rings and f be a Γ-homomorphism from M onto M
′

and A
be a TIIFS of M . If A is f -invariant then,

f(I(a, γ, A)) = I(f(a), γ, f(A)),∀a ∈M,γ ∈ Γ.

Proof. Suppose that A is f -invariant. Let y ∈ I(f(a), γ, f(A)). Then f(A)(y) = f(A)(sγf(a))

for some s ∈ M
′ . Since y, s ∈ M

′ and f is onto, there exist x, r ∈ M such that f(x) = y

and f(r) = s. Thus f(A)f(x) = f(A)(f(r)γf(a)) = f(A)(f(rγa)). Since A is translational
invariant, by what we have proved in Proposition 5.2, we get f(A)(f(x)) = A(x) and
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f(A)(f(rγa)) = A(rγa). Thus A(x) = A(rγa), which implies x ∈ I(a, γ, A), and so
f(x) ∈ f(I(a, γ, A)), i.e., y ∈ f(I(a, γ, A)). Consequently, I(f(a), γ, f(A)) ⊆ f(I(a, γ, A)).
Again, let y ∈ f(I(a, γ, A)). Then there exists x ∈ I(a, γ, A) such that f(x) = y. Also,
x ∈ I(a, γ, A) implies A(x) = A(aγr) for some r ∈M . Now,

µf(A)(y) = Sup{µA(x) : f(x) = y}
= µA(x), since A is f -invariant

= µA(aγr).

Similarly, we can prove νf(A)(y) = νA(aγr). Hence f(A)(y) = A(aγr). Also, if f(r) = s, we
have f(A)(f(a)γs) = f(A)(f(a)γf(r)) = f(A)(f(aγr)) = A(aγr), since A is f -invariant so
f−1f(aγr) = aγr. Thus f(A)(y) = f(A)(f(a)γs) which implies y ∈ I(f(a), γ, f(A)). Hence
f(I(a, γ, A)) ⊆ I(f(a), γ, f(A)), a ∈ M . Consequently, f(I(a, γ, A)) = I(f(a), γ, f(A)), for
a ∈M,γ ∈ Γ.

Proposition 5.4. Let M and M
′

be Γ-rings and f be a Γ-homomorphism from M onto M
′
. Let

B be a TIIFS of M
′
. Let a

′ ∈ M
′
. Then ∀a, b ∈ f−1(a

′
), I(a, γ, f−1(B)) = I(b, γ, f−1(B));

provided that f−1(a
′
) contains more than one element.

Proof. Let x ∈ I(a, γ, f−1(B)). Then f−1(B)(x) = f−1(B)(rγa) for some r ∈ M and
so f−1(B)(x) = B(f(rγa)). Thus f−1(B)(x) = B(f(a)γf(r)). Since a, b ∈ f−1(a

′
),

f(a) = f(b) = a
′ and hence we have f−1(B)(x) = B(f(b)γf(r)) = B(f(bγr)) =

f−1(B)(bγr). This shows that x ∈ I(b, γ, f−1(B)). Hence I(a, γ, f−1(B)) ⊆ I(b, γ, f−1(B)).
Now let y ∈ I(b, γ, f−1(B)). Then f−1(B)(y) = f−1(B)(bγr

′
) for some r

′ ∈ M , and
so f−1(B)(y) = B(f(bγr

′
)) = B(f(b)γf(r

′
)), Since a, b ∈ f−1(a

′
), f(a) = a

′
= f(b)

and hence we have f−1(B)(y) = B(f(a)γf(r
′
)) = B(f(aγr

′
)) = f−1(B)(aγr

′
). This

shows that y ∈ I(a, γ, f−1(B)). Hence, I(b, γ, f−1(B)) ⊆ I(a, γ, f−1(B)). Consequently,
I(a, γ, f−1(B)) = I(b, γ, f−1(B)) ∀a, b ∈ f−1(a

′
).

Theorem 5.5. Let M and M
′

be Γ-rings and f be a Γ-isomorphism from M onto M
′
. Let B be

a translational invariant intuitionistic fuzzy subset of M
′
. Then

I(f−1(y), γ.f−1(B)) = f−1(I(y, γ, B)), ∀y ∈M ′
, γ ∈ Γ.

Proof. Let x ∈ I(f−1(y), γ, f−1(B)). Then

f−1(B)(x) = f−1(B)(f−1(y)γr) for some r ∈M.

= f−1(B)(f−1(y)γf−1(s)), where s ∈M ′
such that f(r) = s.

⇒ B(f(x)) = f−1(B)(f−1(yγs)), since f is bijective

= B(f(f−1(yγs)))

= B(yγs).

So, we have f(x) ∈ I(y, γ, B), i.e., x ∈ f−1(I(y, γ, B)). Hence I(f−1(y), γ, f−1(B)) ⊆
f−1(I(y, γ, B)),∀y ∈ M

′ . Again, let a ∈ f−1(I(y, γ, B)) then f(a) ∈ I(y, γ, B)) ⇒
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B(f(a)) = B(yγs), for some s ∈ M
′ . Also, y, s ∈ M

′ and f is onto implies that there
exist x, r ∈ M such that f(x) = y and f(r) = s. Now, B(f(a)) = B(yγs) ⇒ B(f(a)) =

B(f(x)γf(r)) = B(f(xγr)) ⇒ f−1(B)(a) = f−1(B)(xγr) = f−1(B)(f−1(y)γr) ⇒ a ∈
I(f−1(y), γ, f−1(B)). Thus, f−1(I(y, γ, B)) ⊆ I(f−1(y), γ, f−1(B)), ∀y ∈ M ′ . Consequently,
I(f−1(y), γ, f−1(B)) = f−1(I(y, γ, B)),∀y ∈M ′

, γ ∈ Γ.

Theorem 5.6. Let M and M
′

be Γ-rings and f be a Γ-homomorphism from M onto M
′
. If A

is f -invariant and TIIFS of M . If p is an Aγ-prime element of M , then,f(p) is a f(A)γ-prime
element of M

′
.

Proof. Let f be a Γ-homomorphism from M onto M ′ . If A is f -invariant and TIIFS of M . Then
by Proposition 5.2 f(A) is a TIIFS of M ′ . Suppose that p is an Aγ-prime element of M . Let
(f(p)/xγy)f(A)γ , where x, y ∈ M ′ . Since f is onto, there exists a, b ∈ M such that f(a) = x,

f(b) = y.
Now (f(p)/xγy)f(A)γ ⇒ ∃c ∈M such that

f(A)(xγy) = f(A)(f(p)γf(c))

⇒ f(A)(f(a)γf(b)) = f(A)(f(pγc))

⇒ f(A)(f(aγb)) = f(A)(f(pγc))

⇒ A(aγb) = A(pγc) and so (p/aγb)Aγ .

Since p is an Aγ-prime element of M , we have (p/a)Aγ or (p/b)Aγ
⇒ A(a) = A(pγm) or A(b) = A(pγn), for some m,n ∈M, ∀γ ∈ Γ

⇒ f(A)(f(a)) = f(A)(f(pγm)) or f(A)(f(b)) = f(A)(f(pγn))

⇒ f(A)(f(a)) = f(A)(f(p)γf(m)) or f(A)(f(b)) = f(A)(f(p)γf(n))

⇒ (f(p)/f(a))f(A) or (f(p)/f(b))f(A). Thus, f(p) is a f(A)-prime element of M ′ .

Theorem 5.7. Let f be a homomorphism of a Γ-ring M onto a Γ-ring M
′
. Let A be an

f -invariant and TIIFS of M . If p is an Aγ-prime element of M , then the homomorphic image
of I(p, γ, A) is a prime ideal of M

′
.

Proof. Let f be a Γ-homomorphism from M onto M ′ . If A is f -invariant and TIIFS of M , then
by Proposition 5.2 f(A) is TIIFS of M ′ .

By Theorem 4.11 I(p, γ, A) is a prime ideal of M .
By Theorem 5.3 f(I(p, γ, A)) = I(f(p), γ, f(A)).
By Theorem 5.6 f(p) is a f(A)γ-prime element of M ′

By Theorem 4.11 f(I(p, γ, A)) is a prime ideal of M ′ .
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