As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On some representations and modifications of Markov chains

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:issues/14/62-76
Title of paper: On Some Representations and Modifications of Markov Chains
Author(s):
Aleksander Kacprzyk
Prof. Asen Zlatarov University, Burgas, 1 Prof. Yakimov Blvd., Burgas 8010, Bulgaria
Zhivko Tomov
Prof. Asen Zlatarov University, Burgas, 1 Prof. Yakimov Blvd., Burgas 8010, Bulgaria
zhivko57@yandex.ru
Krassimir Atanassov
Prof. Asen Zlatarov University, Burgas, 1 Prof. Yakimov Blvd., Burgas 8010, Bulgaria
Department of Bioinformatics and Mathematical Modelling,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia
krat@bas.bg
Velin Andonov
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria
velin_andonov@math.bas.bg
Published in: "Issues in Intuitionistic Fuzzy Sets and Generalized Nets", Volume 14 (2018/19), pages 62-76
Download:  PDF (162  Kb, File info)
Abstract: Two new representations of Markov chains are proposed. One of them uses the novel concept of Index Matrix (IM) which has greater modelling capabilities in comparison to the standard matrix. A new normalization operator over IMs is introduced. The other new representation proposed in the present paper uses Generalized Nets (GNs). Two GN models of Markov chain are described. It has been made an attempt to classify them with respect to the DM techniques (neural networks, genetic algorithms, etc.) and the tools used, as well as on the basis of the different areas of DM application (education, medicine, genetics, etc).
Keywords: Markov Chains, Index Matrices, Generalized Nets.
References:
  1. Alexieva, J., E. Choy, E. Koycheva, Review and bibloigraphy on generalized nets theory and applications. In:A Survey of Generalized Nets (E. Choy, M. Krawczak, A. Shannon and E. Szmidt, Eds.), Raffles KvB Monograph No. 10, 2007, 207–301.
  2. Atanassov, K., Generalized index matrices. Comptes rendus de l’Academie Bulgare des Sciences, Vol.40, 1987, No 11, 15–18.
  3. Atanassov, K., Generalized Nets. World Scientific, Singapore, London, 1991.
  4. Atanassov, K., On Generalized Nets Theory. Prof. M. Drinov Academic Publ. House, Sofia, 2007.
  5. Atanassov, K., Index Matrices: Towards an Augmented Matrix Calculus. Springer, Cham, 2014.
  6. Markov, A. A., Extension of the law of large numbers to quantities, depending on each other (1906). Reprint. Journal Electronique d’Histoire des Probabilits et de la Statistique[electronic only] 2.lb (2006), Article 10, 12 p.
  7. Gallager, R. G., Stochastic processes: theory for applications. Cambridge University Press, 2013.
  8. Ibe, O., Markov processes for stochastic modeling. Newnes, 2013.
  9. Atanassov, K., Generalized Nets as a Tool for the Modelling of Data Mining Processes. Innovative Issues in Intelligent Systems (V. Sgurev, R. Yager, J. Kacprzyk, V. Jotov, Eds.), Cham, Springer, 2016, 161–215.
  10. Zoteva, D., M. Krawczak, Generalized Nets as a Tool for the Modelling of Data Mining Processes. A Survey. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 2017, 1–60.
  11. Molloy, M. K., Performance Analysis Using Stochastic Petri Nets. IEEE Trans. Computers, 31, 1982, 913-917.
  12. Natkin, S., Les Reseaux de Petri Stochastiques et leur Application a 1’Evaluation des Systemes Informatiques. These de Docteur Ingegneur, CNAM, Paris, France, 1980.
  13. Shapiro, S., A Stochastic Petri Net with Applications to Modelling Occupancy Times for Concurrent Task Systems. Networks, Vol. 9, No. 4, 1979, 375–379.
  14. M. K. Molley, “Performance modeling using stochastic Petri nets”, IEEE Trans. Comput, vol. C-31, pp. 913-917, Sept. 1982.
  15. MacDonald, I. L., & Zucchini, W., Hidden Markov and other models for discrete-valued time series (Vol. 110). CRC Press, 1997.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.