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Abstract: Two new representations of Markov chains are proposed. One of
them uses the novel concept of Index Matrix (IM) which has greater mod-
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1 Introduction

Markov Chain (MC) is one of the important concepts in the modelling of
stochastic processes as a sequence of events, the probability of which depends
only on the previous event [6–8]. Usually, a MC with n vertices is represented
by a matrix:

a1,1 . . . a1, j . . . a1,n
...

. . .
...

. . .
...

ai,1 . . . ai, j . . . ai,n
...

. . .
...

. . .
...

an,1 . . . an, j . . . an,n

,

where for every i (1≤ i≤ n):

n

∑
j=1

ai, j = 1. (1)

The MC can be represented also by a graph. For example, a MC with 5
vertices v1,v2, ...,v5 can have (standard) matrix representation

0.0 0.3 0.7 0.0 0.0
0.0 0.2 0.3 0,5 0.0
0.0 0.0 0.0 0.0 1.0
0.6 0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.0 1.0

,

and the graph representation shown in Fig. 1.
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Figure 1.
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If we do not like condition (1) to be valid for vertex v5 as a final vertex,
element a5,5 of the matrix will obtain value 0.0 and Fig. 1 obtains the form in
Fig. 2.
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Figure 2.

In the present paper, representations of MC will be constructed by two
comparatively new and not well-known mathematical objects - Index Matrices
(IM, see [2, 5]) and Generalized Nets (GNs, see [1, 3, 4]).

2 Index Matrix Representations of Markov Chains

Let I be a fixed set of indices and R be the set of the real numbers. By IM with
index sets K and L (K,L⊂ I), we denote the object:

[K,L,{aki,l j}]≡

l1 l2 . . . ln
k1 ak1,l1 ak1,l2 . . . ak1,ln
k2 ak2,l1 ak2,l2 . . . ak2,ln
...

...
...

. . .
...

km akm,l1 akm,l2 . . . akm,ln

,

where K = {k1,k2, ...,km}, L = {l1, l2, ..., ln}, for 1 ≤ i ≤ m, and 1 ≤ j ≤ n :
aki,l j ∈R – the set of real numbers.

Different operations, relations and operators are defined over IMs in [5].
For the needs of the present research, we will introduce the definition of the
operation addition.

Let the IMs A = [K,L,{aki,l j}] and B = [P,Q,{bpr,qs}] be given. Let ∗ be
one of the operations “+”, “-”, “.”, “:”, between a- and b-elements of both IMs.
Then,

A⊕(∗) B = [K∪P,L∪Q,{ctu,vw}],
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where

ctu,vw =



aki,l j , if tu = ki ∈ K and vw = l j ∈ L−Q
or tu = ki ∈ K−P and vw = l j ∈ L;

bpr,qs , if tu = pr ∈ P and vw = qs ∈ Q−L
or tu = pr ∈ P−K and vw = qs ∈ Q;

aki,l j ∗bpr,qs , if tu = ki = pr ∈ K∩P
and vw = l j = qs ∈ L∩Q;

0, otherwise.

Now, the IM for the MC from the example in Fig. 2 will have the form

v1 v2 v3 v4 v5

v1 0.0 0.3 0.7 0.0 0.0
v2 0.0 0.2 0.3 0.5 0.0
v3 0.0 0.0 0.0 0.0 1.0
v4 0.6 0.0 0.0 0.0 0.4
v5 0.0 0.0 0.0 0.0 0.0

.

At first sight, we can see that the IM is more complex than the standard
one. The question: Why we like to complicate the form of the first matrix?
is sound. But, as it is shown in [5], IMs can be used to describe things which
cannot be described by standard matrices. For example, let us have another, for
brevity – simpler, MC with 5 vertices w1,w2,w3,w4,w5, the (standard) matrix

0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.4 0,6 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0

,

without condition (1) for its vertex w5, and with the graph-representation in
Fig. 3.
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Figure 3.

If we know that the pairs of vertices v2 and w1, v4 and w2, v5 and w4
coincide, and if we would like to unite both of the MCs, matrix algebra does
not allow us to construct a united MC, while if A is the IM which corresponds
to the first MC (in Fig. 2) and

B =

w1 w2 w3 w4 w5

w1 0.0 1.0 0.0 0.0 0.0
w2 0.0 0.0 0.4 0.6 0.0
w3 0.0 0.0 0.0 0.0 1.0
w4 0.0 0.0 0.0 0.0 1.0
w5 0.0 0.0 0.0 0.0 0.0

is the IM for the MC in Fig. 3, then we can construct IMs in respect to the
form of the operation between the matrix elements, as follows:

C = A⊕(+) B =

v1 v2 v3 v4 v5 w3 w5

v1 0.0 0.3 0.7 0.0 0.0 0.0 0.0
v2 0.0 0.2 0.3 1.5 0.0 0.0 0.0
v3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
v4 0.6 0.0 0.0 0.0 1.0 0.4 0.0
v5 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w3 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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and

D = A⊕(max) B =

v1 v2 v3 v4 v5 w3 w5

v1 0.0 0.3 0.7 0.0 0.0 0.0 0.0
v2 0.0 0.2 0.3 1.0 0.0 0.0 0.0
v3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
v4 0.6 0.0 0.0 0.0 0.6 0.4 0.0
v5 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w3 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

that represent the union of both MCs.
Now, we can see that the condition (1) is violated for the rows indexed by

v2 and v4. So, we can normalize the values in these rows, using the formula

as,i =
as,i

7
∑
j=1

as, j

, (2)

where s = 2,4.
The IM C obtains the normalized form

C =

v1 v2 v3 v4 v5 w3 w5

v1 0.0 0.3 0.7 0.0 0.0 0.0 0.0
v2 0.0 0.1 0.15 0.75 0.0 0.0 0.0
v3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
v4 0.3 0.0 0.0 0.0 0.5 0.2 0.0
v5 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w3 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

and the IM D – the form

D = A⊕(max) B =

v1 v2 v3 v4 v5 w3 w5

v1 0.0 0.3 0.7 0.0 0.0 0.0 0.0
v2 0.0 0.13 0.2 0.67 0.0 0.0 0.0
v3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
v4 0.38 0.0 0.0 0.0 0.24 0.38 0.0
v5 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w3 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

.
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In these IMs, all rows without the last ones, indexed by w5 (the final vertex)
satisfy condition (1). The graphical form of the new MC in +-form, before
normalization is shown in Fig. 4 and after it – in Fig. 5. The max-forms of
non-normalized and normalized MCs have similar forms.
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Figure 4.
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Figure 5.

The necessary condition for normalization of values in rows indexed by
v2 and v4 described above, motivated us to introduce a normalization operator
over IMs in the form:

N(A) = N([K,L,{aki,l j}]) =

K,L,


aki,l j

n
∑

s=1
aki,ls


 .

3 Generalized Net Representations of Markov Chains

Generalized Nets (GNs, see [3,4]) are extensions of Petri nets and their modifi-
cations and extensions, like E-nets, Time Petri nets, Colour Petri nets, Stochas-
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tic Petri nets, Predicative-Transition nets, etc. GNs have a part of the compo-
nents of the rest Petri nets types of nets, e.g., transitions, places, tokens, tem-
poral components. But they have also some specific components, as transition
condition predicates that are elements of IM, initial and current tokens charac-
teristics and others. The existing of the predicates and characteristics increase
essentially the modelling abilities of the GNs. So, for each type of Petri net
extension or modification there exists a GN which describes the process of
functioning and the results of the work of each net from the respective type.

For example, the colours of the tokens of the Coloured Petri nets are rep-
resented by the GN-tokens’ characteristics; the time-components of the E-nets
and of the Time Petri nets are represented by the GN-time components. In the
GN case, however, there are two types of time-components which are similar
to the components of the two Petri net modifications. As an illustration that the
GNs have higher modelling powers than, e.g. the two discussed types of nets,
we mention that the E-nets time-components can describe the continuation of
a cinema projection, the time-components of the Time Petri nets - moments
of the beginning of projection, but only both of the GN-time components give
information for the interval between two projections. In addition, we mention
that there is a GN that describes the process of functioning and the results of
the work of each Turing machine. Another GN describes the process of func-
tioning and the results of the work of the Kolmogorov’s algorithm, etc. The
possibilities of using GNs as a tool for describing Data Mining processes and
objects are discussed in [9, 10].

When a GN-component is not necessary for a given model, it can be omit-
ted and the GN without this component is called a reduced GN. For the models
in the present paper, we will use a reduced GN with transitions of the following
form

Z = 〈L′,L′′,r〉,

where L′ = {k1, ...,km} is the set of the input places of the transition, L′′ =
{l1, ..., ln} is the set of its output places and r is the IM

r =

l1 . . . l j . . . ln
k1
... ri, j

km

,

where ri, j is the predicate that corresponds to the i-th input and j-th output
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place (1 ≤ i ≤ m,1 ≤ j ≤ n). When its truth value is “true”, a token from the
i-th input place transfers to the j-th output place; otherwise, this is not possible.

The complete reduced GN, that we will use here, has the formal definition

〈A,K,X ,Φ〉,

where A is the set of all GN-transitions, K - the set of the GN-tokens, which
enter the GN or stay in certain GN-places with initial characteristics, given by
the function X ; Φ is the characteristic function that assigns new characteristics
to each token when it makes a transfer from an input to an output place of a
given transition.

Different operations, relations and operators are defined over GNs. The
operations are union, intersection and subtraction of two GNs. The relations
are used to compare the structure and the results of the work of two GNs. The
operators are global (that can change the GN-global components), local (that
can change the transitions components), hierarchical (used to replace a sub-GN
with a transition or a place, or the opposite - to replace a place or a transition of
a given GN with a sub-GN; to replace a sub-GN with another sub-GN and to
replace a GN-token with a sub-GN), reduced (to omit some GN-components
or to determine which GN-components of a given GN are omitted), extending
(to extend a given GN to an extended GN of a given type) and dynamical (used
to change the algorithms of tokens’ transfer, to determine the possibility for a
token to be split or united, and to determine the way of calculating the truth-
values of the transition condition predicates).

The concept of stochastic Petri nets has been introduced practically in par-
allel by S. Shapiro [13] and S. Natkin [12]. In [11], Molloy has shown that
each Markov chain can be represent by a stochastic Petri net.

Below, we will illustrate the GN capabilities to represent each Markov
chain. For example, the chain in Fig. 4 can be represented by the GN in Fig.
6, but this is only one of the possible GN-representations.
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V55
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l10i- -

l6i- -

Figure 6. Generalized Net model of the MC from Fig. 4

We can juxtapose a GN-transition to each vertex of the Markov chain. In
one of the GN-representations, when the token, which represents the process
of functioning of the Markov chain, enters a place, it can have as a current
characteristic the value of the variable r ∈ [0,1]. In Fig. 6, the GN has 7
transitions and 12 places, and the form in Fig. 6.

The formal forms of the transitions are the following.

V1 = 〈{l7},{l1, l2},
l1 l2

l7 r7,1 r7,2
〉,

where
r7,1 = “r ∈ [0.0,0.3]”,
r7,2 = “r ∈ (0.3,1.0]”.

V2 = 〈{l1, l5},{l3, l4, l5},
l3 l4 l5

l1 r1,3 r1,4 r1,5
l5 r5,3 r5,4 r5,5

〉,

where
r1,3 = r5,3 = “r ∈ [0.0,0.75]”,
r1,4 = r5,4 = “r ∈ (0.75,0.9]”.
r1,5 = r5,5 = “r ∈ (0.9,1.0]”.
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V3 = 〈{l2, l4},{l6},
l6

l2 true
l4 true

〉.

V4 = 〈{l3},{l7, l8, l9},
l7 l8 l9

l3 r3,7 r3,8 r3,9
〉,

where
r3,7 = “r ∈ [0.0,0.3]”,
r3,8 = “r ∈ (0.3,0.5]”,
r3,9 = “r ∈ (0.5,1.0]”.

V5 = 〈{l6, l9},{l10},
l10

l6 true
l9 true

〉.

V6 = 〈{l8},{l11},
l11

l8 true
〉.

V7 = 〈{l10, l11},{l12},
l12

l10 true
l11 true

〉.

Initially, the token can stay, e.g., in place l7. It can have some initial char-
acteristic related to the specifics of the model based on a Markov chain and
the above mentioned variable r. Entering next places, the token can obtain as
a characteristic not only the new value of r, but other information of interest
for the model. Therefore, we can see directly that the GN represents the func-
tioning of the Markov chain in Fig. 5. However, the GN can do additional
things.

First, the token can collect additional information in its current character-
istics.

Second, which is really important: we can put in the GN not one token, but
a set of tokens to determine the way of the functioning of the Markov chain,
and each of them can go through the GN with respect to its own characteristics
(its own values of the variable r). If the place capacities are, e.g, infinity, then
the tokens can go through the GN independently, but if these capacities or at
least a part of them are finite, there will be situations in which different con-
flicts between the separate tokens, or between the separate parallel processes
flowing in the given Markov chain will arise.
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Third, in [15], a Markov chain in which the development of the process is a
function of not only the current values of the r-variable, but of the events in the
previous steps of the process is studied. Obviously, this idea can be realized
by the present GN, if the token’s characteristic function has the form of the
function of the Markov chain. So, it will depend on the respective number
of the previous characteristics of a given token. Moreover, it can depend on
the respective number of the previous characteristics of all other GN-tokens.
Obviously, this is a serious extension of the standard Markov process that is
inspired by the GN properties.

Fourth, the GN can have another form, e.g., this in Fig. 7.
Now, each transition has an additional place, marked by m, with an addi-

tional token in it. The token obtains as a current characteristic the additional
information related to the modelled process, which is different from the one,
the tokens obtain during the functioning of the first model. Let us denote the
first tokens as α-tokens and the new ones - as β -tokens. Now, the β -tokens can
obtain as a current characteristic the random values that are generated in the
Markov chain, which values can be functions of all events which have arisen
in the GN-model.

Fifth, we can change the variable that determines the directions of the de-
velopment of the processes (or the directions of tokens’ transfers) with pred-
icates, that will be evaluated when the transitions are activated as a result of
collecting enough tokens in their input places. In the particular case, when
the predicates have the form shown above as elements of the IM related to the
separate transitions, we obtain the first GN-model. But these predicates can
have essentially general form giving the possibility to describe more general
processes.
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-
m1g- l6g- -

-
m3g- -

m5g-
Figure 7. A more detailed GN of a MC.

We will illustrate this last possibility with the following example. Let us
for simplicity use the GN from Fig. 6 and let us have the token α in place l3.
Let the values of the variables or of the predicates determine that it must go
to place l9. But let the predicate r10,12 is not true as above, but, e.g., it is the
predicate “there is a token in place l2”. If this predicate is not true, then the
token from place l3 cannot go to place l12. In the frames of the GN-model we
can change the trajectory of token α so to direct it to place l8 and then to place
l12 through place l11.

If we use the more detailed GN from Fig. 7, the solution for change of the
trajectory will be obtained in the m-place of the transition V4.

4 Conclusion

Markov chains have wide applicability and are an important area of mathe-
matics. In particular, they are used in the modelling and evaluation of Human-
Cyber-Physical Systems. The results presented here can be used in the mod-
elling of telecommunication networks to assess the security level.
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