Title of paper:
|
On intuitionistic L-fuzzy socle of modules
|
Author(s):
|
P. K. Sharma
|
Post-Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 1, pages 65โ73
|
DOI:
|
https://doi.org/10.7546/nifs.2023.29.1.65-73
|
Download:
|
PDF (239 Kb, File info)
|
Abstract:
|
In this paper we try to study the intuitionistic ๐ฟ-fuzzy aspects of socle of modules over rings. We demonstrate some properties of a socle of intuitionistic ๐ฟ-fuzzy submodules and their relations with intuitionistic ๐ฟ-fuzzy essential submodules and a family of intuitionistic ๐ฟ-fuzzy complemented submodules of a module. Some related results are also established.
|
Keywords:
|
Intuitionistic ๐ฟ-fuzzy submodule, Intuitionistic ๐ฟ-fuzzy simple submodule, Intuitionistic ๐ฟ-fuzzy essential submodule, Socle of an intuitionistic ๐ฟ-fuzzy submodule.
|
AMS Classification:
|
08A72, 03F55, 16D10, 16D60.
|
References:
|
- Anderson, F. W., & Fuller, K. R. (1992). Rings and Categories of Modules. 2nd edition. Springer Verlag.
- Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20โ23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1โS6.
- Atanassov, K., & Stoeva, S. (1984). Intuitionistic ๐ฟ-fuzzy sets. Cybernetics and System Research, Vol. 2. Elsevier Sci. Publ., Amsterdam, 539โ540.
- Birkhoff, G. (1967). Lattice Theory. American Mathematical Society, Col. Pub., Providence.
- Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems, 133, 227โ235.
- Goguen, J. (1967). ๐ฟ-fuzzy sets. Journal of Mathematical Analysis and Applications, 18, 145โ174.
- Kanchan, Sharma, P. K., & Pathania, D. S. (2020). Intuitionistic ๐ฟ-fuzzy submodules. Advances in Fuzzy Sets and Systems, 25(2), 123โ142.
- Kasch, F. (1982). Modules and Rings. Academic Press, London.
- Meena, K., & Thomas, K. V. (2011). Intuitionistic ๐ฟ-fuzzy subrings. International Mathematics Forum, 6(52), 2561โ2572.
- Palaniappan, N., Naganathan, S., & Arjunan, K. (2009). A study on intuitionistic ๐ฟ-fuzzy subgroups. Applied Mathematics Sciences, 3(53), 2619โ2624.
- Sharma, P. K., & Kanchan. (2018). On intuitionistic ๐ฟ-fuzzy prime submodules. Annals of Fuzzy Mathematics and Informatics, 16(1), 87โ97.
- Sharma, P. K., & Kanchan. (2020). On intuitionistic ๐ฟ-fuzzy primary and ๐-primary submodules. Malaya Journal of Matematik, 8(4), 1417โ1426.
- Sharma, P. K., Kanchan, & Pathania, D. S. (2021). Intuitionistic ๐ฟ-fuzzy essential and closed submodules. Notes on Intuitionistic Fuzzy Sets, 27(4), 44โ54.
- Sharma, P. K., Kanchan, & Pathania, D. S. (2021). Simple and semi-simple intuitionistic ๐ฟ-fuzzy modules. 7th International Conference on IFS and Contemporary Mathematics, May 25โ29, 2021, Turkey.
- Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and ๐ฟ-fuzzy sets. Fuzzy Sets and Systems, 110, 271โ274.
- Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|