Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283

2023, Volume 29, Number 1, 65-73

DOI: 10.7546/nifs.2023.29.1.65-73

On intuitionistic L-fuzzy socle of modules

P. K. Sharma

Post-Graduate Department of Mathematics, D.A.V. College Jalandhar, Punjab, India

e-mail: pksharma@davjalandhar.com

Received: 25 March 2023 **Accepted:** 13 April 2023 **Online First:** 15 April 2023

Abstract: In this paper we try to study the intuitionistic L-fuzzy aspects of socle of modules over rings. We demonstrate some properties of a socle of intuitionistic L-fuzzy submodules and their relations with intuitionistic L-fuzzy essential submodules and a family of intuitionistic L-fuzzy complemented submodules of a module. Some related results are also established.

Keywords: Intuitionistic L-fuzzy submodule, Intuitionistic L-fuzzy simple submodule, Intuitionistic L-fuzzy essential submodule, Socle of an intuitionistic L-fuzzy submodule.

2020 Mathematics Subject Classification: 08A72, 03F55, 16D10, 16D60.

1 Introduction

Let M be a unitary module over a commutative ring R with zero element θ . Recall that a submodule K of an R-module M is called an essential submodule of M denoted by $K \leq_e M$, if for every submodule N of M, $K \cap N = \{\theta\}$ implies that $N = \{\theta\}$. Equivalently, $K \cap N \neq \{\theta\}$ for all non-zero submodules N of M. A submodule K of a module M is called complement for a submodule N of M if it is maximal with respect to the property that $K \cap N = \{\theta\}$. The socle of an R-module M is denoted by $\mathrm{Soc}(M)$ and is defined as the sum of all simple submodules of M, i.e., the socle of M is the largest submodule of M generated by simple modules. For more information about essential submodules, complement of a submodule and socle of a module, we refer to [1,8,16].

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Atanassov and Stoeva [3] generalized the notion of L-fuzzy subsets given by Goguen [6] to an intuitionistic L-fuzzy subset, where L is any complete lattice with a complete order reversing involution N. Wang and He in [15] and Deschrijver and Kerre in [5] studied the relationship between intuitionistic fuzzy sets and L-fuzzy sets and some extensions of fuzzy set theory. Palaniappan and others in [10] studied intuitionistic L-fuzzy subgroups. Meena and Thomas in [9] discussed the notion of intuitionistic L-fuzzy subrings. Sharma et al. [7, 11, 12] discussed intuitionistic L-fuzzy submodules, intuitionistic L-fuzzy prime and primary submodule of a module. The notions like intuitionistic L-fuzzy essential submodule, intuitionistic L-fuzzy complement of a submodule and intuitionistic L-fuzzy simple submodule were studied by the author et al. in [13] and [14].

In this paper, our attempt is to investigate the intuitionistic L-fuzzy aspects of a socle of a module. Using the concepts of intuitionistic L-fuzzy essentiality and relative complement defined by the author et al. in [13], it is proved that if A is an intuitionistic L-fuzzy submodule of M such that $A = \operatorname{Soc}(A)$, then A has no proper intuitionistic L-fuzzy essential submodules. Further, if $A = \operatorname{Soc}(A)$ and $IF_L(A)$ (the family of intuitionistic L-fuzzy submodules of A) is complemented, then for any $C \in IF_L(A)$, $IF_L(C)$ is also intuitionistic L-fuzzy complemented. It is shown that if E is the intersection of all intuitionistic L-fuzzy essential submodules of A, where A is an intuitionistic L-fuzzy submodule of E. It leads us to the result that $\operatorname{Soc}(A) = E$. Apart of these results we have also evaluated the socle of a direct sum of intuitionistic L-fuzzy submodules.

2 Preliminaries

Throughout this paper, R is a commutative ring with identity, M a unitary R-module and L stands for a complete lattice with least element 0 and greatest element 1, θ denotes the zero element of M. The lattice L is called regular if $a \wedge b \neq 0$ for every $a \neq 0, b \neq 0$ and $a \vee b \neq 1$ for every $a \neq 1, b \neq 1$ (see [4]).

Definition 2.1. [7] Let (L, \leq) be a complete lattice with an evaluative order reversing operation $N: L \to L$. Let X be a non-empty set. An intuitionistic L-fuzzy set A in X is defined as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, where $\mu_A: X \to L$ and $\nu_A: X \to L$ define respectively the degree of membership and the degree of non-membership for every $x \in X$ satisfying $\mu_A(x) \leq N(\nu_A(x))$. A complete order reversing involution is a mapping $N: L \to L$ such that

- (i) N(0) = 1 and N(1) = 0;
- (ii) If $\alpha < \beta$, then $N(\beta) < N(\alpha)$;
- (iii) $N(N(\alpha)) = \alpha$;

(iv)
$$N(\vee_{i=1}^n \alpha_i) = \wedge_{i=1}^n N(\alpha_i)$$
 and $N(\wedge_{i=1}^n \alpha_i) = \vee_{i=1}^n N(\alpha_i)$.

We also denote an intuitionistic L-fuzzy set simply by ILFS and the set of all ILFS's on X by ILFS(X).

Remark 2.2. When $\mu_A(x) = N(\nu_A(x))$, for all $x \in X$, then A is called L-fuzzy set. We use the notion $A = (\mu_A, \nu_A)$ to denote the intuitionistic L-fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$.

For $A, B \in ILFS(X)$ we say that $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$. Also, $A \subset B$ if and only if $A \subseteq B$ and $A \ne B$.

For $A \in ILFS(X)$ and $\alpha, \beta \in L$ with $\alpha \leq N(\beta)$, in analogy with the operator $A_{(\alpha,\beta)}$ defined by Atanassov for intuitionistic fuzzy sets in [2], we define here

$$A_{(\alpha,\beta)} = \{ x \in X : \mu_A(x) \ge \alpha, \nu_A(x) \le \beta \}.$$

Then $A_{(\alpha,\beta)}$ is called the (α,β) -cut set of A. The support of an ILFS A is denoted by A^* and is defined as

$$A^* = \{ x \in X : \mu_A(x) > 0, \nu_A(x) < 1 \}.$$

Definition 2.3. [11] Let $A = (\mu_A, \nu_A)$ be an ILFS of X and $Y \subseteq X$. Then the intuitionistic L-fuzzy characteristic function $\chi_Y = (\mu_{\chi_Y}, \nu_{\chi_Y})$ on Y is defined as

$$\mu_{\chi_Y}(y) = \begin{cases} 1, & \textit{if } y \in Y \\ 0, & \textit{otherwise} \end{cases}; \quad \nu_{\chi_Y}(y) = \begin{cases} 0, & \textit{if } y \in Y \\ 1, & \textit{otherwise}. \end{cases}$$

Definition 2.4. [7,11] Let $A \in ILFS(M)$. Then A is called an intuitionistic L-fuzzy module (ILFM) of M if for all $x, y \in M, r \in R$, the following statements are satisfied:

- (i) $\mu_A(x-y) \geq \mu_A(x) \wedge \mu_A(y)$;
- (ii) $\mu_A(rx) > \mu_A(x)$;
- (iii) $\mu_A(\theta) = 1$;
- (iv) $\nu_A(x-y) \leq \nu_A(x) \vee \nu_A(y)$;
- (v) $\nu_A(rx) < \nu_A(x)$;
- (vi) $\nu_A(\theta) = 0$.

The collection of all intuitionistic L-fuzzy modules of M is denoted by $IF_L(M)$. If $A, B \in IF_L(M)$ such that $B \subseteq A$, then B is called an intuitionistic L-fuzzy submodule of A. If L is regular and $A, B \in IF_L(M)$, then A^*, B^* are submodules of M. Further we see that $(A+B)^* = A^* + B^*$ and $(A\cap B)^* = A^* \cap B^*$ (see [7]). Also, $A^* = \{\theta\}$ if and only if $A = \chi_{\{\theta\}}$ (see [13]). If $A, B \in IF_L(M)$, then the direct sum of A and B is A+B provided $A\cap B = \chi_{\{\theta\}}$, and this is denoted by $A \oplus B$. If $A, B, C \in IF_L(M)$ be such that $C = A \oplus B$, then A, B are called intuitionistic L-fuzzy direct summands of C.

Definition 2.5. [13] Let M be an R-module and $A, C \in IF_L(M)$ be such that $\chi_{\{\theta\}} \neq C \subseteq A$. Then C is called an intuitionistic L-fuzzy essential submodule of A if $C \cap B \neq \chi_{\{\theta\}}$, $\forall B \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq B \subseteq A$. We denote this by writing $C \subseteq_e A$.

In particular, when $A = \chi_M$. Then C is called an intuitionistic L-fuzzy essential submodule of M, written as $C \leq_e \chi_M$ or $C \leq_e M$, if $C \cap B \neq \chi_{\{\theta\}}$, $\forall B \neq \chi_{\{\theta\}} \in IF_L(M)$.

Proposition 2.6. [13] Let M be an R-module and $A, C \in IF_L(M)$ be such that $C \leq_e A$. Then $C^* \leq_e A^*$, but the converse is true when L is regular.

Theorem 2.7. [13] Let $A, B, C \in IF_L(M)$ be such that $C \subseteq B \subseteq A$. Then $C \subseteq_e A$ if and only if $C \subseteq_e B$ and $B \subseteq_e A$.

Theorem 2.8. [13] Let $C_1, C_2, A_1, A_2 \in IF_L(M)$. If $C_1 \leq_e A_1$ and $C_2 \leq_e A_2$, then $C_1 \cap C_2 \leq_e A_1 \cap A_2$.

Corollary 2.9. [13] Let $C_1, C_2, A \in IF_L(M)$. If $C_1 \subseteq_e A$ and $C_2 \subseteq_e A$, then $C_1 \cap C_2 \subseteq_e A$.

Theorem 2.10. [13] Let L be a regular lattice and $C_1, C_2, A_1, A_2 \in IF_L(M)$. If $C_i \leq_e A_i$, i = 1, 2. If $C_1 \cap C_2 = \chi_{\{\theta\}}$, then $A_1 \cap A_2 = \chi_{\{\theta\}}$ and $C_1 \oplus C_2 \leq_e A_1 \oplus A_2$.

Corollary 2.11. [13] Let L be a regular lattice and $C_1, C_2, A \in IF_L(M)$. If $C_i \leq_e A$, i = 1, 2. If $C_1 \cap C_2 = \chi_{\{\theta\}}$, then $C_1 \oplus C_2 \leq_e A$.

Theorem 2.12. [13] Let L be a regular lattice and $C, A \in IF_L(M)$ where $C \subseteq A$. Let $f: N \to M$ be a module homomorphism such that $f(B) \subseteq A$ where $B \in IF_L(N)$. If $C \preceq_e A$, then $f^{-1}(C) \preceq_e B$.

Definition 2.13. [13] Let M be an R-module and $A, B, C \in IF_L(M)$ be such that $B \subseteq A$. Then C is called an intuitionistic L-fuzzy complement of B in A if $C \subseteq A$ and C is maximal with the property that $B \cap C = \chi_{\{\theta\}}$. We write C is complement of B in A.

Theorem 2.14. [13] Let L be a regular lattice and M be an R-module. If C is complement of B in A, then C^* is complement of B^* in A^* .

Remark 2.15. [13] The converse of the above theorem is not true. If for any $A, B, C \in IF_L(M)$ the submodule C^* is complement of B^* in A^* , then C need not be complement of B in A.

Definition 2.16. [13] Let $A, B \in IF_L(M)$. Then B is said to be a strictly proper intuitionistic L-fuzzy submodule of A if $B \subseteq A$ and $B \neq \chi_{\{\theta\}}$ and $A|_{B^*} = B$ and $B^* \subseteq A^*$. Also B is said to be a proper intuitionistic L-fuzzy submodule of A if $B \subseteq A$, $B \neq \chi_{\{\theta\}}$ and $B^* \subseteq A^*$.

Definition 2.17. [14] $A \in IF_L(M)$ is said to be an intuitionistic L-fuzzy simple module if A has no proper intuitionistic L-fuzzy submodules.

Theorem 2.18. [14] Let L be a regular lattice and M be a module over ring R. Then M is simple if and only if χ_M is an intuitionistic L-fuzzy simple module.

Lemma 2.19. Let L be a regular lattice and $B, C, D \in IF_L(M)$ such that $B \subseteq C$. Then

$$C \cap (D+B) = (C \cap D) + B.$$

Proof. Let $A = C \cap (D + B)$. Then

$$A^* = [C \cap (D+B)]^* = C^* \cap (D^* + B^*).$$

Since $B \subseteq C$, so $B^* \subseteq C^*$. Now by the modular law

$$C^* \cap (D^* + B^*) = (C^* \cap D^*) + B^*.$$

Thus

$$A^* = (C^* \cap D^*) + B^* = (C \cap D)^* + B^*.$$

Also, we get $A = (C \cap D) + B$. Thus, the result follows.

3 Socle of an intuitionistic L-fuzzy submodule

In this section we study the concept of a socle of an intuitionistic L-fuzzy submodule of a module and we analyse some of its properties.

Definition 3.1. If $A \in IF_L(M)$, then the socle of A, denoted by Soc(A), is defined as the sum of all intuitionistic L-fuzzy simple submodules of A. Thus $Soc(A) = \sum B_i$, where B_i is an intuitionistic L-fuzzy simple submodule of A. If A has no intuitionistic L-fuzzy simple submodule, then $Soc(A) = \chi_{\{\theta\}}$.

Theorem 3.2. If A = Soc(A), then A has no proper intuitionistic L-fuzzy essential submodules.

Proof. Given $A = \operatorname{Soc}(A) = \sum B_i$, where B_i are intuitionistic L-fuzzy simple submodules of A, let C be an intuitionistic L-fuzzy essential submodule of A. Then there exist intuitionistic L-fuzzy submodules B_i' of A such that $C \cap B_i = B_i'$ and $B_i' \neq \chi_{\{\theta\}}$.

Now

$$\mu_{B'_i}(x) = \mu_{C \cap B_i}(x) = \mu_C(x) \land \mu_{B_i}(x) \le \mu_C(x)$$

and

$$\nu_{B_i'}(x) = \nu_{C \cap B_i}(x) = \nu_C(x) \vee \nu_{B_i}(x) \ge \nu_C(x)$$

imply that $B_i' \subseteq C$. Similarly, $B_i' \subseteq B_i$. Now B_i is an intuitionistic L-fuzzy simple submodule of A, so $B_i' \subseteq B_i$ implies $B_i' = B_i$. Also $B_i' \subseteq C$ implies that C contains all intuitionistic L-fuzzy simple submodules of A. Thus $\operatorname{Soc}(A) \subseteq C$. This gives $A \subseteq C$. Thus A = C, i.e., A is an essential submodule of itself. Hence A has no proper intuitionistic L-fuzzy essential submodules.

Theorem 3.3. If $A \in IF_L(M)$ and E is the intersection of all intuitionistic L-fuzzy essential submodules of A, then $Soc(A) \subseteq E$.

Proof. Let $E = \cap \{B_i : B_i \leq_e A\}$. Suppose $B_i, C \in IF_L(M)$ be such that C is an intuitionistic L-fuzzy simple submodule of A and $B_i \leq_e A$. Then $B_i \cap C \neq \chi_{\{\theta\}}$. Also $B_i \cap C \subseteq C$ and C being an intuitionistic L-fuzzy simple submodule of A, we have $B_i \cap C = C$.

Now

$$\mu_C(x) = \mu_{B_i \cap C}(x) = \mu_{B_i}(x) \land \mu_C(x) \le \mu_{B_i}(x)$$

and

$$\nu_C(x) = \nu_{B_i \cap C}(x) = \nu_{B_i}(x) \vee \nu_C(x) \ge \nu_{B_i}(x).$$

Thus $C \subseteq B_i$. This implies that if C is an intuitionistic L-fuzzy simple submodule of A, then C is contained in every intuitionistic L-fuzzy essential submodule B_i of A. Hence $Soc(A) \subseteq E$. \square

Theorem 3.4. Let L be a regular lattice and $A \in IF_L(M)$. Let E be the intersection of all intuitionistic L-fuzzy essential submodules of A. If every non-zero intuitionistic L-fuzzy submodule of E is a direct summand of E, then every non-zero intuitionistic L-fuzzy submodule of E contains an intuitionistic E-fuzzy simple submodule of E.

Proof. Let $E = \cap \{B_i : B_i \leq_e A\}$. Suppose $C(\neq \chi_{\{\theta\}}) \in IF_L(M)$ be such that $C \subseteq E$. We consider $\mathfrak{F} = \{F : F \subseteq C, F \in IF_L(M)\}$. By Zorn's Lemma there exists a maximal element B in \mathfrak{F} such that $B \subseteq C$ and $B \in IF_L(M)$. By the given condition $E = B \oplus B'$, for some $B' \in IF_L(M)$. Now

$$C = C \cap E = C \cap (B \oplus B') = B \oplus (C \cap B')$$

by Lemma (2.19).

If $C \cap B'$ is not an intuitionistic L-fuzzy simple submodule, then it contains a non-zero intuitionistic L-fuzzy submodule D of M. So there exists $D' \in IF_L(M)$ such that $E = D \oplus D'$. Also

$$C \cap B' = (C \cap B') \cap E = (C \cap B') \cap (D \oplus D') = D' \oplus (C \cap B' \cap D).$$

This implies

$$B \oplus (C \cap B') = B \oplus D' \oplus (C \cap B' \cap D) = B \oplus D.$$

Thus $C \cap B' = D$, which is a contradiction. Therefore $C \cap B'$ is an intuitionistic L-fuzzy simple submodule of A. Thus C contains an intuitionistic L-fuzzy simple submodule $C \cap B'$ of A. This proves the result.

Theorem 3.5. Let L be a regular lattice and $A \in IF_L(M)$. If E is the intersection of all intuitionistic L-fuzzy essential submodules of A, then $E \subseteq Soc(A)$.

Proof. Firstly, we show that every intuitionistic L-fuzzy submodule of E is a direct summand. Let C be an intuitionistic L-fuzzy submodule of E. Then C is an intuitionistic L-fuzzy submodule of E. So there exists an intuitionistic E-fuzzy submodule E such that E is a complement of E in E, i.e., E i.e.,

Now $C \subseteq C \oplus B$ implies $C \cap C' = \chi_{\{\theta\}}$. Similarly $B \cap C' = \chi_{\{\theta\}}$. If $C \cap (B \oplus C') \neq \chi_{\{\theta\}}$, then there exist a non-zero element x in M such that $x \in [C \cap (B \oplus C')]^* = C^* \cap (B^* \oplus C'^*)$, i.e., $\mu_C(x) > 0$, $\nu_{C}(x) < 1$ and $\mu_{B \oplus C'}(x) > 0$, $\nu_{B \oplus C'}(x) < 1$. This implies that there exist

unique $y,z\in M$ such that x=y+z and $\mu_B(y)\wedge\mu_{C'}(z)>0$ and $\nu_B(y)\vee\nu_{C'}(z)<1$, where $\mu_B(y)>0, \mu_{C'}(z)>0$ and $\nu_B(y)<1, \nu_{C'}(z)<1$. Thus x=y+z with $x\in C^*, y\in B^*$ and $z\in C^{\prime*}$. Also z is a non-zero element of M, for otherwise it implies that x is a zero element of M.

Now $z=x-y\in C'^*\cap (B^*\oplus C^*)=[C'\cap (B\oplus C)]^*$. This shows that $C'\cap (B\oplus C)\neq \chi_{\{\theta\}}$, a contradiction. Thus $C\cap (B\oplus C')=\chi_{\{\theta\}}$. By the maximality of B we have $B\oplus C'=B$.

Now

$$\mu_B(x) = \mu_{B \oplus C'}(x) \ge \mu_B(0) \land \mu_{C'}(x) = \mu_{C'}(x)$$

and

$$\nu_B(x) = \nu_{B \oplus C'}(x) \le \nu_B(0) \lor \nu_{C'}(x) = \nu_{C'}(x).$$

Thus $C' \subseteq B$ and hence $\chi_{\{\theta\}} = C' \cap B = C'$. This proves $C \oplus B \leq_e A$. Thus $E \subseteq C \oplus B$. This implies $E = E \cap (C \oplus B) = E \oplus (C \cap B)$, since $C \subseteq E$ and $C \cap (E \cap B) = \chi_{\{\theta\}}$. Thus every intuitionistic L-fuzzy submodule of E is a direct summand.

Let D be the sum of all intuitionistic L-fuzzy simple submodules of E. Then D is a direct summand of E so there exists $D' \in IF_L(M)$ such that $E = D \oplus D'$. If $D' \neq \chi_{\{\theta\}}$, then there exists an intuitionistic L-fuzzy simple submodule G of D'. This gives $G \subseteq D$, a contradiction. Thus $D' = \chi_{\{\theta\}}$. This implies E = D. Hence $E \subseteq \operatorname{Soc}(A)$.

Using Theorem (3.3), Theorem (3.4) and Theorem (3.5), we get the following theorem.

Theorem 3.6. Let L be a regular lattice and $A \in IF_L(M)$. If E is the intersection of all intuitionistic L-fuzzy essential submodules of A, then Soc(A) = E.

Theorem 3.7. Let L be a regular lattice and $f: N \to M$ be a module homomorphism. If $A \in IF_L(M)$ and $B \in IF_L(N)$ such that $f(B) \subseteq A$, then $f^{-1}(\operatorname{Soc}(A)) \subseteq \operatorname{Soc}(B)$.

Proof. This follows immediately by using Theorem (3.6), Theorem (2.12) and Corollary (2.9). \Box

Theorem 3.8. Let L be a regular lattice and $A, A_1, A_2 \in IF_L(M)$ such that $A_1, A_2 \subseteq A$ and $A = A_1 \oplus A_2$. Then $Soc(A) = Soc(A_1) \oplus Soc(A_2)$.

Proof. This follows immediately by using Theorem (3.6) and Corollaries (2.9) and (2.11).

Theorem 3.9. Let L be a regular lattice and $A, B, C \in IF_L(M)$ such that $A \subseteq B \subseteq C$. If A is a direct summand of C, then A is also a direct summand of B.

Proof. Since A is a direct summand of C, there exists $A' \in IF_L(M)$ with $A' \subseteq C$ such that A + A' = C and $A \cap A' = \chi_{\{\theta\}}$. Now $(A + A') \cap B = B$. Then by using Lemma (2.19) we get $A + (A' \cap B) = B$. Also $A \cap (A' \cap B) = \chi_{\{\theta\}}$. This implies that A is also a direct summand of B.

Definition 3.10. If $A \in IF_L(M)$ and $IF_L(A) = \{C \subseteq A : C \in IF_L(M)\}$. Then $IF_L(A)$ is intuitionistic L-fuzzy complemented if for all $C \subseteq A$, $C \in IF_L(M)$ there exists $C' \in IF_L(M)$ such that $C \cap C' = \chi_{\{\theta\}}$ and C + C' = A. In other words, $IF_L(A)$ is intuitionistic L-fuzzy complemented if every element of $IF_L(A)$ is a direct summand of A.

Theorem 3.11. Let L be a regular lattice and $A \in IF_L(M)$. If A = Soc(A), then $IF_L(A)$ is intuitionistic L-fuzzy complemented and for any $C \in IF_L(A)$, $IF_L(C)$ is also intuitionistic L-fuzzy complemented.

Proof. Since $A = \operatorname{Soc}(A)$, then by Theorem (3.2) A has no proper intuitionistic L-fuzzy essential submodule. Let C be any intuitionistic L-fuzzy submodule of A. If B is a relative complement for C in A, then as Theorem (3.5) we get $B \oplus C \subseteq_e A$. But given that A has no proper intuitionistic L-fuzzy essential submodule, so $B \oplus C = A$ and B being a relative complement for C, we get $B \cap C = \chi_{\{\theta\}}$. Hence $IF_L(A)$ is intuitionistic L-fuzzy complemented.

Let $B \in IF_L(M)$ and $B \subseteq C$. Then $B \subseteq A$. As $IF_L(A)$ is intuitionistic L-fuzzy complemented, so there exists $F \in IF_L(M)$ such that B + F = A and $B \cap F = \chi_{\{\theta\}}$.

Now

$$(C \cap F) \cap B = C \cap (F \cap B) = C \cap \chi_{\{\theta\}} = \chi_{\{\theta\}}.$$

Also by Lemma (2.8),

$$(C \cap F) + B = C \cap (F + B) = C \cap A = C.$$

Hence there exists $C \cap F \subseteq C \subseteq IF_L(M)$ such that $(C \cap F) \cap B = \chi_{\{\theta\}}$ and $(C \cap F) + B = C$. Thus, $IF_L(C)$ is intuitionistic L-fuzzy complemented.

4 Conclusion

In this paper, we studied the concept of a socle of an intuitionistic fuzzy submodule of a module in the lattice setting. It is proved that if the socle of an intuitionistic L-fuzzy submodule A of an R-module M is A, then A has no proper intuitionistic L-fuzzy essential submodules. Further, we showed that if E is the intersection of all intuitionistic L-fuzzy essential submodules of A, then every non-zero intuitionistic L-fuzzy submodule of E contains a simple intuitionistic L-fuzzy submodule of E. Using this result, we showed that when E is regular, then $\operatorname{Soc}(A) = E$. Apart from this we have also evaluated the socle of a direct sum of intuitionistic E-fuzzy submodules. Further, we showed that if E is also intuitionistic E-fuzzy complemented, then for any E is also intuitionistic E-fuzzy submodules and intuitionistic E-fuzzy prime submodules will provide various exciting results.

References

- [1] Anderson, F. W., & Fuller, K. R. (1992). *Rings and Categories of Modules*. 2nd edition. Springer Verlag.
- [2] Atanassov, K. (1983). Intuitionistic fuzzy sets. *VII ITKR Session*, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: *Int. J. Bioautomation*, 2016, 20(S1), S1–S6.

- [3] Atanassov, K., & Stoeva, S. (1984). Intuitionistic *L*-fuzzy sets. *Cybernetics and System Research*, Vol. 2. Elsevier Sci. Publ., Amsterdam, 539–540.
- [4] Birkhoff, G. (1967). Lattice Theory. American Mathematical Society, Col. Pub., Providence.
- [5] Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. *Fuzzy Sets and Systems*, 133, 227–235.
- [6] Goguen, J. (1967). *L*-fuzzy sets. *Journal of Mathematical Analysis and Applications*, 18, 145–174.
- [7] Kanchan, Sharma, P. K., & Pathania, D. S. (2020). Intuitionistic *L*-fuzzy submodules. *Advances in Fuzzy Sets and Systems*, 25(2), 123–142.
- [8] Kasch, F. (1982). Modules and Rings. Academic Press, London.
- [9] Meena, K., & Thomas, K. V. (2011). Intuitionistic *L*-fuzzy subrings. *International Mathematics Forum*, 6(52), 2561–2572.
- [10] Palaniappan, N., Naganathan, S., & Arjunan, K. (2009). A study on intuitionistic *L*-fuzzy subgroups. *Applied Mathematics Sciences*, 3(53), 2619–2624.
- [11] Sharma, P. K., & Kanchan. (2018). On intuitionistic *L*-fuzzy prime submodules. *Annals of Fuzzy Mathematics and Informatics*, 16(1), 87–97.
- [12] Sharma, P. K., & Kanchan. (2020). On intuitionistic *L*-fuzzy primary and *P*-primary submodules. *Malaya Journal of Matematik*, 8(4), 1417–1426.
- [13] Sharma, P. K., Kanchan, & Pathania, D. S. (2021). Intuitionistic *L*-fuzzy essential and closed submodules. *Notes on Intuitionistic Fuzzy Sets*, 27(4), 44–54.
- [14] Sharma, P. K., Kanchan, & Pathania, D. S. (2021). Simple and semi-simple intuitionistic *L*-fuzzy modules. *7th International Conference on IFS and Contemporary Mathematics*, May 25–29, 2021, Turkey.
- [15] Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and *L*-fuzzy sets. *Fuzzy Sets and Systems*, 110, 271–274.
- [16] Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.