As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:On L^r-intuitionistic fuzzy Henstock–Kurzweil integral with application to intuitionistic fuzzy Laplace transform

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/3/402-425
Title of paper: On Lr-intuitionistic fuzzy Henstock–Kurzweil integral with application to intuitionistic fuzzy Laplace transform
Author(s):
A. S. Wungreiphi     0009-0000-6775-9693
Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
wungreiphias@gmail.com
Fokrul Alom Mazarbhuiya     0000-0001-8364-8133
Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
fokrul.mazarbhuiya@dbuniversity.ac.in
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 3, pages 402–425
DOI: https://doi.org/10.7546/nifs.2025.31.3.402-425
Download:  PDF (300  Kb, File info)
Abstract: This article presents the concept of [math]\displaystyle{ L^r }[/math]-Henstock–Kurzweil integral of intuitionistic fuzzy number-valued function. First, we define the [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral, explore its properties, demonstrate [math]\displaystyle{ L^r }[/math]-continuity of the primitive, and provide a convergence theorem. Furthermore, we show that this integral generalizes intuitionistic fuzzy Henstock–Kurzweil integral, has a broader scope and give a numerical example. We also introduce the proposed integral over an infinite interval and prove that the α- and β-cuts of the integral are Henstock–Kurzweil integrable. Finally, as an application, we define intuitionistic fuzzy Laplace transform based on [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral and investigate the existence of intuitionistic fuzzy Laplace transform.
Keywords: Intuitionistic fuzzy set, [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral, [math]\displaystyle{ L^r }[/math]-derivative, [math]\displaystyle{ L^r }[/math]-continuous, Intuitionistic fuzzy Laplace transform.
AMS Classification: 03F55, 26E50, 28E10.
References:
  1. Acharya, A., Mahata, A., Sil, N., Mahato, S., Mukherjee, S., Mahato, S. K., & Roy, B. (2023). A prey-refuge harvesting model using intuitionistic fuzzy sets. Decision Analytics Journal, 8, Article ID 100308.
  2. Ali, W., Shaheen, T., Haq, I. U., Toor, H. G., Alballa, T., & Khalifa, H. A. E.-W. (2023). A novel interval-valued decision theoretic rough set model with intuitionistic fuzzy numbers based on power aggregation operators and their application in medical diagnosis. Mathematics, 11(19), Article ID 4153.
  3. Allahviranloo, T., & Ahmadi, M. B. (2010). Fuzzy Laplace transforms. Soft Computing, 14, 235–243.
  4. Atanassov, K. T., Vassilev, P., & Tsvetkov, R. (2013). Intuitionistic Fuzzy Sets, Measures and Integrals. “Prof. Marin Drinov” Academic Publishing House, Sofia.
  5. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  6. Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37–45.
  7. Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64(2), 159–174.
  8. Atanassov, K. T. (1992). Remarks on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 51(1), 117–118.
  9. Bayeg, S., & Mert, R. (2021). On intuitionistic fuzzy version of Zadeh’s extension principle. Notes on Intuitionistic Fuzzy Sets, 27(3), 9–17.
  10. Beg, I., Bisht, M., & Rawat, S. (2023). An approach for solving fully generalized intuitionistic fuzzy transportation problems. Computational and Applied Mathematics, 42(329).
  11. Belhallaj, Z., Elomari, M., Melliani, S., & Chadli, L.S. (2022). On intuitionistic fuzzy Laplace transforms for solving intuitionistic fuzzy partial volterra integro-differential equations. Proceedings of the 8th International Conference on Optimization and Applications (ICOA), 6-7 October 2022, Genoa, Italy, 1–6.
  12. Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2023). Application of the intuitionistic Laplace transform method for resolution of one dimensional wave equations. International Journal of Difference Equations, 18(1), 211–225.
  13. Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2022). Solving intuitionistic fuzzy transport equations by intuitionistic fuzzy Laplace transforms. The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022), 9-10 February 2022, Rabat, Morocco, 43, 01021.
  14. Bongiorno, B., Piazza, L. D., & Musial, K. (2012). A decomposition theorem for the fuzzy Henstock integral. Fuzzy Sets and Systems, 200, 36–47.
  15. Borkowski. M., & Bugajewska, D. (2018). Applications of Henstock–Kurzweil integrals on an unbounded interval to differential and integral equations. Mathematica Slovaca, 68(1), 77–88.
  16. Calderon, A. P., & Zygmund, A. (1961). Local properties of solutions of elliptic partial differential equations. Studia Mathematica, 20, 171–225.
  17. Ettoussi, R., Melliani, S., & Chadli, L. S. (2019). On intuitionistic fuzzy Laplace transforms for second order intuitionistic fuzzy differential equations. In: Melliani, S., & Castillo, O. (Eds.). Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing, Vol. 372, pp. 153–168. Springer, Cham.
  18. Ettoussi, R., Melliani, S., & Chadli, L. S. (2025). Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order. Notes on Intuitionistic Fuzzy Sets, 31(3), 267–283.
  19. Ghosh, S., Roy, S. K., Ebrahimnejad, A., & Verdegay, J. L. (2021). Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex and Intelligent Systems, 7(2), 1009–1023.
  20. Gong, Z., & Hao, Y. (2019). Fuzzy Laplace transform based on the Henstock integral and its applications in discontinuous fuzzy systems. Fuzzy Sets and Systems, 358, 1–28.
  21. Gong, Z., & Shao, Y. (2009). The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions. Fuzzy Sets and Systems, 160(11), 1528–1546.
  22. Gong, Z., & Wang, L. (2012). The Henstock–Stieltjes integral for fuzzy-number-valued functions. Information Sciences, 188, 276–297.
  23. Gong, Z., & Wang, L. (2007). The numerical calculus of expectations of fuzzy random variables. Fuzzy Sets and Systems, 158(7), 722–738.
  24. Gong, Z., Wu, C., & Li, B. (2002). On the problem of characterizing derivatives for the fuzzy-valued functions. Fuzzy Sets and Systems, 127(3), 315–322.
  25. Gong, Z., & Wu, C. (2002). Bounded variation, absolute continuity and absolute integrability for fuzzy-number-valued functions. Fuzzy Sets and Systems, 129(1), 83–94.
  26. Gong, Z. (2004). On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral. Fuzzy Sets and Systems, 145(3), 381–393.
  27. Gordon, L. (1967). Perron’s integral for derivatives in Lr. Studia Mathematica, 28(3), 295–316.
  28. Ha, M., & Yang, L. (2009). Intuitionistic fuzzy Riemann integral. 2009 Chinese Control and Decision Conference, 17-19 June 2009, Guilin, China, 3783–3787.
  29. Henstock, R. (1963). Theory of Integration. Butterworths, London.
  30. Herawan, T., Abdullah, Z., Chiroma, H., Sari, E. N., Ghazali, R., & Nawi, N. M. (2014). Cauchy criterion for the Henstock–Kurzweil integrability of fuzzy number-valued functions. 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 24-27 September 2014, Delhi, India, 1329–1333.
  31. Kumar, S., & Gangwal, C. (2021). A study of fuzzy relation and its application in medical diagnosis. Asian Research Journal of Mathematics, 17(4), 6–11.
  32. Kurzweil, J. (1957). Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Mathematical Journal, 7(3), 418–449.
  33. Li, L., Wang, S., Zhang, S., Liu, D., & Ma, S. (2023). The hydrogen energy infrastructure location selection model: A hybrid fuzzy decision-making approach. Sustainability, 15(13), Article ID 10195.
  34. Mondal, S. P., & Roy, T. K. (2015). Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit. TWMS Journal of Applied and Engineering Mathematics, 5(1), 30–45.
  35. Musial, P., & Sagher, Y. (2004). The Lr Henstock–Kurzweil integral. Studia Mathematica, 160(1), 53–81.
  36. Musial, P., Skvortsov, V., & Tulone, F. (2022). The HKr-integral is not contained in the Pr-integral. Proceedings of the American Mathematical Society, 150, 2107–2114.
  37. Musial, P., & Tulone, F. (2019). Dual of the class of HKr of integrable functions. Minimax Theory and Applications, 4(1), 151–160.
  38. Musial, P., & Tulone, F. (2015). Integration by parts for the Lr Henstock–Kurzweil Integral. Electronic Journal of Differential Equations, 2015(44), 1–7.
  39. Peng-Yee, L. (1989). Lanzhou Lectures on Henstock Integration. World Scientific, Singapore.
  40. Sanchez-Perales, S., & Tenorio, J. F. (2014). Laplace transform using the Henstock–Kurzweil integral. Revista de la Union Matem ´ atica Argentina, 55(1), 71–81.
  41. Shao, Y., Li, Y., & Gong, Z. (2023). On Lr-norm-based derivatives and fuzzy Henstock–Kurzweil integrals with an application. Alexandrian Engineering Journal, 67, 361–373.
  42. Tikare, A. (2012). The Henstock–Stieltjes integral in Lr. Journal of Advanced Research in Pure Mathematics, 4(1), 59–80.
  43. Tulone, F., & Musial, P. (2022). The Lr-variational integral. Mediterranean Journal of Mathematics, 19(3), Article ID 96.
  44. Wu, C., & Gong, Z. (2001). On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets and Systems, 120(3), 523–532.
  45. Wungreiphi, A. S., Mazarbhuiya, F. A., & Shenify, M. (2023). On extended Lr-norm-based derivatives to intuitionistic fuzzy sets. Mathematics, 12(1), 139.
  46. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.