| Title of paper:
|
On Lr-intuitionistic fuzzy Henstock–Kurzweil integral with application to intuitionistic fuzzy Laplace transform
|
| Author(s):
|
A. S. Wungreiphi 0009-0000-6775-9693
|
| Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
|
| wungreiphias@gmail.com
|
Fokrul Alom Mazarbhuiya 0000-0001-8364-8133
|
| Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
|
| fokrul.mazarbhuiya@dbuniversity.ac.in
|
|
| Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 3, pages 402–425
|
| DOI:
|
https://doi.org/10.7546/nifs.2025.31.3.402-425
|
| Download:
|
PDF (300 Kb, File info)
|
| Abstract:
|
This article presents the concept of [math]\displaystyle{ L^r }[/math]-Henstock–Kurzweil integral of intuitionistic fuzzy number-valued function. First, we define the [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral, explore its properties, demonstrate [math]\displaystyle{ L^r }[/math]-continuity of the primitive, and provide a convergence theorem. Furthermore, we show that this integral generalizes intuitionistic fuzzy Henstock–Kurzweil integral, has a broader scope and give a numerical example. We also introduce the proposed integral over an infinite interval and prove that the α- and β-cuts of the integral are Henstock–Kurzweil integrable. Finally, as an application, we define intuitionistic fuzzy Laplace transform based on [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral and investigate the existence of intuitionistic fuzzy Laplace transform.
|
| Keywords:
|
Intuitionistic fuzzy set, [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral, [math]\displaystyle{ L^r }[/math]-derivative, [math]\displaystyle{ L^r }[/math]-continuous, Intuitionistic fuzzy Laplace transform.
|
| AMS Classification:
|
03F55, 26E50, 28E10.
|
| References:
|
- Acharya, A., Mahata, A., Sil, N., Mahato, S., Mukherjee, S., Mahato, S. K., & Roy, B. (2023). A prey-refuge harvesting model using intuitionistic fuzzy sets. Decision Analytics Journal, 8, Article ID 100308.
- Ali, W., Shaheen, T., Haq, I. U., Toor, H. G., Alballa, T., & Khalifa, H. A. E.-W. (2023). A novel interval-valued decision theoretic rough set model with intuitionistic fuzzy numbers based on power aggregation operators and their application in medical diagnosis. Mathematics, 11(19), Article ID 4153.
- Allahviranloo, T., & Ahmadi, M. B. (2010). Fuzzy Laplace transforms. Soft Computing, 14, 235–243.
- Atanassov, K. T., Vassilev, P., & Tsvetkov, R. (2013). Intuitionistic Fuzzy Sets, Measures and Integrals. “Prof. Marin Drinov” Academic Publishing House, Sofia.
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37–45.
- Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64(2), 159–174.
- Atanassov, K. T. (1992). Remarks on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 51(1), 117–118.
- Bayeg, S., & Mert, R. (2021). On intuitionistic fuzzy version of Zadeh’s extension principle. Notes on Intuitionistic Fuzzy Sets, 27(3), 9–17.
- Beg, I., Bisht, M., & Rawat, S. (2023). An approach for solving fully generalized intuitionistic fuzzy transportation problems. Computational and Applied Mathematics, 42(329).
- Belhallaj, Z., Elomari, M., Melliani, S., & Chadli, L.S. (2022). On intuitionistic fuzzy Laplace transforms for solving intuitionistic fuzzy partial volterra integro-differential equations. Proceedings of the 8th International Conference on Optimization and Applications (ICOA), 6-7 October 2022, Genoa, Italy, 1–6.
- Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2023). Application of the intuitionistic Laplace transform method for resolution of one dimensional wave equations. International Journal of Difference Equations, 18(1), 211–225.
- Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2022). Solving intuitionistic fuzzy transport equations by intuitionistic fuzzy Laplace transforms. The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022), 9-10 February 2022, Rabat, Morocco, 43, 01021.
- Bongiorno, B., Piazza, L. D., & Musial, K. (2012). A decomposition theorem for the fuzzy Henstock integral. Fuzzy Sets and Systems, 200, 36–47.
- Borkowski. M., & Bugajewska, D. (2018). Applications of Henstock–Kurzweil integrals on an unbounded interval to differential and integral equations. Mathematica Slovaca, 68(1), 77–88.
- Calderon, A. P., & Zygmund, A. (1961). Local properties of solutions of elliptic partial differential equations. Studia Mathematica, 20, 171–225.
- Ettoussi, R., Melliani, S., & Chadli, L. S. (2019). On intuitionistic fuzzy Laplace transforms for second order intuitionistic fuzzy differential equations. In: Melliani, S., & Castillo, O. (Eds.). Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing, Vol. 372, pp. 153–168. Springer, Cham.
- Ettoussi, R., Melliani, S., & Chadli, L. S. (2025). Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order. Notes on Intuitionistic Fuzzy Sets, 31(3), 267–283.
- Ghosh, S., Roy, S. K., Ebrahimnejad, A., & Verdegay, J. L. (2021). Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex and Intelligent Systems, 7(2), 1009–1023.
- Gong, Z., & Hao, Y. (2019). Fuzzy Laplace transform based on the Henstock integral and its applications in discontinuous fuzzy systems. Fuzzy Sets and Systems, 358, 1–28.
- Gong, Z., & Shao, Y. (2009). The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions. Fuzzy Sets and Systems, 160(11), 1528–1546.
- Gong, Z., & Wang, L. (2012). The Henstock–Stieltjes integral for fuzzy-number-valued functions. Information Sciences, 188, 276–297.
- Gong, Z., & Wang, L. (2007). The numerical calculus of expectations of fuzzy random variables. Fuzzy Sets and Systems, 158(7), 722–738.
- Gong, Z., Wu, C., & Li, B. (2002). On the problem of characterizing derivatives for the fuzzy-valued functions. Fuzzy Sets and Systems, 127(3), 315–322.
- Gong, Z., & Wu, C. (2002). Bounded variation, absolute continuity and absolute integrability for fuzzy-number-valued functions. Fuzzy Sets and Systems, 129(1), 83–94.
- Gong, Z. (2004). On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral. Fuzzy Sets and Systems, 145(3), 381–393.
- Gordon, L. (1967). Perron’s integral for derivatives in Lr. Studia Mathematica, 28(3), 295–316.
- Ha, M., & Yang, L. (2009). Intuitionistic fuzzy Riemann integral. 2009 Chinese Control and Decision Conference, 17-19 June 2009, Guilin, China, 3783–3787.
- Henstock, R. (1963). Theory of Integration. Butterworths, London.
- Herawan, T., Abdullah, Z., Chiroma, H., Sari, E. N., Ghazali, R., & Nawi, N. M. (2014). Cauchy criterion for the Henstock–Kurzweil integrability of fuzzy number-valued functions. 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 24-27 September 2014, Delhi, India, 1329–1333.
- Kumar, S., & Gangwal, C. (2021). A study of fuzzy relation and its application in medical diagnosis. Asian Research Journal of Mathematics, 17(4), 6–11.
- Kurzweil, J. (1957). Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Mathematical Journal, 7(3), 418–449.
- Li, L., Wang, S., Zhang, S., Liu, D., & Ma, S. (2023). The hydrogen energy infrastructure location selection model: A hybrid fuzzy decision-making approach. Sustainability, 15(13), Article ID 10195.
- Mondal, S. P., & Roy, T. K. (2015). Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit. TWMS Journal of Applied and Engineering Mathematics, 5(1), 30–45.
- Musial, P., & Sagher, Y. (2004). The Lr Henstock–Kurzweil integral. Studia Mathematica, 160(1), 53–81.
- Musial, P., Skvortsov, V., & Tulone, F. (2022). The HKr-integral is not contained in the Pr-integral. Proceedings of the American Mathematical Society, 150, 2107–2114.
- Musial, P., & Tulone, F. (2019). Dual of the class of HKr of integrable functions. Minimax Theory and Applications, 4(1), 151–160.
- Musial, P., & Tulone, F. (2015). Integration by parts for the Lr Henstock–Kurzweil Integral. Electronic Journal of Differential Equations, 2015(44), 1–7.
- Peng-Yee, L. (1989). Lanzhou Lectures on Henstock Integration. World Scientific, Singapore.
- Sanchez-Perales, S., & Tenorio, J. F. (2014). Laplace transform using the Henstock–Kurzweil integral. Revista de la Union Matem ´ atica Argentina, 55(1), 71–81.
- Shao, Y., Li, Y., & Gong, Z. (2023). On Lr-norm-based derivatives and fuzzy Henstock–Kurzweil integrals with an application. Alexandrian Engineering Journal, 67, 361–373.
- Tikare, A. (2012). The Henstock–Stieltjes integral in Lr. Journal of Advanced Research in Pure Mathematics, 4(1), 59–80.
- Tulone, F., & Musial, P. (2022). The Lr-variational integral. Mediterranean Journal of Mathematics, 19(3), Article ID 96.
- Wu, C., & Gong, Z. (2001). On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets and Systems, 120(3), 523–532.
- Wungreiphi, A. S., Mazarbhuiya, F. A., & Shenify, M. (2023). On extended Lr-norm-based derivatives to intuitionistic fuzzy sets. Mathematics, 12(1), 139.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
|
| Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|