As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Intuitionistic fuzzy group algebra

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/31/4/465-478)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/4/465-478
Title of paper: Intuitionistic fuzzy group algebra
Author(s):
Poonam Kumar Sharma     0000-0001-5463-8665
Post-Graduate Department of Mathematics, D. A. V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 4, pages 465–478
DOI: https://doi.org/10.7546/nifs.2025.31.4.465-478
Download:  PDF (225  Kb, File info)
Abstract: This paper introduces the concept of an intuitionistic fuzzy group algebra associated with a finite group G and an intuitionistic fuzzy group A on G. We establish its structural properties, showing that it simultaneously behaves as an intuitionistic fuzzy algebra and an intuitionistic fuzzy G-module. Extending author's earlier results on the semi-simplicity of intuitionistic fuzzy G-modules, we explore links to complete reducibility and injectivity. Further, we study intersections, (α,β)-cuts, and homomorphic images of such algebras, and define intuitionistic fuzzy group algebra homomorphisms. Finally, we prove that the class of all intuitionistic fuzzy group algebras forms a category.
Keywords: Intuitionistic fuzzy G-module, Intuitionistic fuzzy group, Intuitionistic fuzzy group algebra, Intuitionistic fuzzy group algebra homomorphism, Category.
AMS Classification: 03F55, 16D10, 16D90, 16W22, 22D20.
References:
  1. Abraham, P., Varghese, E., Thomas, T. & Priyanka. (2024). A new introduction to the fuzzy group algebra. Journal of Computational Analysis and Applications, 33(4), 39–42.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T. (1994). New operation defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61, 137–142.
  4. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg.
  5. Basnet, D. K. (2011). Topics in Intuitionistic Fuzzy Algebra. Lambert Academic Publishing.
  6. Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
  7. Curties, C. W., & Reiner, I. (1962). Representation Theory of Finite Groups and Associated Algebras. InterScience Publishers / John Wiley & Sons.
  8. Davvaz, B., Dudek, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hv-submodules. Information Sciences, 176, 285–300.
  9. Fernadez, S. (2004). A Study of Fuzzy G-Modules. Ph.D. Thesis, St. Albert’s College, Rev. Dr. Konnully Memorial Research Centre and P.G. Department of Mathematics.
  10. Gordon, J., & Liebeck, M. (2001). Representations and Characters of Groups. (2nd ed.). Cambridge University Press.
  11. Isaac, P., & John, P. P. (2011). On intuitionistic fuzzy submodules of a module. International Journal of Mathematical Sciences and Applications, 1(3), 1447–1454.
  12. Musili, C. (1993). Representations of Finite Groups. Hindustan Book Agency.
  13. Negoita, C. V., & Ralescu, D. A. (1975). Applications of Fuzzy Sets and Systems Analysis. Birkhauser, Basel.
  14. Rosenfeld, A. (1971). Fuzzy group. Journal of Mathematical Analysis and Applications, 35, 512–517.
  15. Rahman, S., & Saikia, H. K. (2012). Some aspects of Atanassov’s intuitionistic fuzzy submodules. International Journal of Pure and Applied Mathematics, 77(3), 369–383.
  16. Sharma, P. K. (2011). Intuitionistic fuzzy groups. International Journal of Data Warehousing & Mining, 1(1), 86–94.
  17. Sharma, P. K. (2013). (α, β)-Cut of intuitionistic fuzzy modules-II. International Journal of Mathematical Sciences and Applications, 3(1), 11–17.
  18. Sharma, P. K. (2016). Direct sum of intuitionistic fuzzy submodules of G-modules. Asian Journal of Fuzzy and Applied Mathematics, 4(4), 36–46.
  19. Sharma, P. K. (2016). Isomorphism theorems for intuitionistic fuzzy submodules of G-modules. Notes on Intuitionistic Fuzzy Sets, 22(4), 80–88.
  20. Sharma, P. K. (2016). Reducibility and complete reducibility of intuitionistic fuzzy G-modules. Annals of Fuzzy Mathematics and Informatics, 11(6), 885–898.
  21. Sharma, P. K. (2016). Semi-simple intuitionistic fuzzy G-modules. International Journal of Pure and Applied Researches, 1(2), 101–108.
  22. Sharma, P. K. (2024). Intuitionistic fuzzy lattice ordered G-modules. Journal of Fuzzy Extension and Applications, 5(1), 141–158.
  23. Sharma, P. K., & Chopra, S. (2016). Injectivity of intuitionistic fuzzy G-modules. Annals of Fuzzy Mathematics and Informatics, 12(6), 805–823.
  24. Sharma, P. K., & Chopra, S. (2016). Projectivity of intuitionistic fuzzy G-modules. Advances in Fuzzy Sets and Systems, 21(3), 239–264.
  25. Sharma, P. K., & Kaur, G. (2016). Intuitionistic fuzzy superfluous submodule. Notes on Intuitionistic Fuzzy Sets, 22(3), 34–46.
  26. Sharma, P. K., & Kaur, T. (2015). Intuitionistic fuzzy G-modules. Notes on Intuitionistic Fuzzy Sets, 21(1), 6–23.
  27. Sharma, P. K., & Kaur, T. (2016). On intuitionistic fuzzy representation of intuitionistic fuzzy G-modules. Annals of Fuzzy Mathematics and Informatics, 11(4), 557–569.
  28. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.