As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Solvability of an intuitionistic fuzzy fractional differential equation of second type

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/30/4/349-367)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/4/349-367
Title of paper: Solvability of an intuitionistic fuzzy fractional differential equation of second type
Author(s):
Hamid Sadiki
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
h.sadiki@usms.ma
Khadija Oufkir
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
oufkirkhadijabzou@gmail.com
Aziz El Ghazouani
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
aziz.elghazouani@usms.ma
M'hamed Elomari
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
m.elomari@usms.ma
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 4, pages 349–367
DOI: https://doi.org/10.7546/nifs.2024.30.4.349-367
Download:  PDF (302  Kb, File info)
Abstract: In this research, we provide certain novel requirements for the existence and uniqueness of fuzzy solutions for a type of non-linear intuitionistic fuzzy fractional equations with intuitionistic fuzzy initial conditions under the intuitionistic fuzzy fractional derivative of order [math]\displaystyle{ n \in (0,3) }[/math] in Caputo sense. The required findings are demonstrated by employing the Banach fixed point theorem, the intuitionistic fuzzy Laplace transform and the Mittag-Leffler function. An example is provided to demonstrate the reliability of our findings.
Keywords: Intuitionistic fuzzy set of second type, Intuitionistic fuzzy number, Intuitionistic fuzzy fractional derivative of Caputo sense, Intuitionistic fuzzy Laplace transform, Banach fixed point theorem, Mittag-Leffler function.
AMS Classification: 26A33, 34A07, 34K37.
References:
  1. Agarwal, R. P., Lakshmikantham, V., & Nieto, J. J. (2010). On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 72(6), 2859–2862.
  2. Akram, M., Ihsan, T., & Allahviranloo, T. (2023). Solving Pythagorean fuzzy fractional differential equations using Laplace transform. Granular Computing, 8(3), 551–575.
  3. Akram, M., & Ihsan, T. (2023). Solving Pythagorean fuzzy partial fractional diffusion model using the Laplace and Fourier transforms. Granular Computing, 8(4), 689–707.
  4. Amir, F. I. A., El Ghazouani, A., & Melliani, S. (2024). Fuzzy Fractional Differential Equation Involving the Fuzzy Conformable Derivative. The Scientific World Journal, 2024, Article ID 993669 (11 pages).
  5. Arhrrabi, E., Elomari, M., Melliani, S., & Chadli, L. S. (2023). Fuzzy fractional boundary value problems with Hilfer fractional derivatives. Asia Pacific Journal of Mathematics, 10, Article ID 4.
  6. Arshad, S., & Lupulescu, V. (2011). On the fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 74(11), 3685–3693.
  7. Arshad, S., & Lupulescu, V. (2011). Fractional differential equation with the fuzzy initial condition. Electronic Journal of Differential Equations (EJDE), 2011(34), 1–8.
  8. Atanassov, K. T. (1989). Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Mathematical Foundations of Artificial Intelligence Seminar, Sofia, Preprint IM-MFAIS-1-89.
  9. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer PhysicaVerlag Heidelberg.
  10. Bede, B., & Gal, S. G. (2005). Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151(3), 581–599.
  11. El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2023). Existence and asymptotic behavior of non-linear hybrid functional differential equations including the fuzzy Caputo Nabla fractional difference. Mathematics in Engineering, Science & Aerospace (MESA), 14(3), 737–750.
  12. El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2024). Fuzzy neutral fractional integro-differential equation existence and stability results involving the Caputo fractional generalized Hukuhara derivative. Journal of Nonlinear, Complex and Data Science, 25(1), 53–78.
  13. El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2024). On the existence and uniqueness results for fuzzy fractional boundary value problem involving Caputo fractional derivative. Boletim da Sociedade Paranaense de Matematica, 42, 1–21.
  14. El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2025). On the existence and uniqueness of fuzzy mild solution of fractional evolution equations. Kragujevac Journal of Mathematics, 49(6), 949–966.
  15. El Ghazouani, A., Elomari, M. (2024). Solving fuzzy non-homogeneous wave equations via Laplace residual power series approach. New Mathematics and Natural Computation. DOI: 10.1142/S179300572650002X.
  16. El Ghazouani, A., Elomari, M., & Melliani, S. (2023). Solvability and GUH stability results of fuzzy nonlinear ABC-fractional coupled system. In: 9th International IFS and Contemporary Mathematics and Engineering Conference, (p. 20).
  17. El Ghazouani, A., Elomari, M., & Melliani, S. (2024). A semi-analytical solution approach for fuzzy fractional acoustic waves equations using the Atangana Baleanu Caputo fractional operator. Soft Computing, 28, 9307–9315.
  18. El Ghazouani, A., Elomari, M., Melliani, S. (2024). Existence and uniqueness results of fuzzy Hilfer fractional Langevin evolution equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 31(2), 133–147.
  19. El Ghazouani, A., Talhaoui, A., & Melliani, S. (2023). Existence and uniqueness results for a semilinear fuzzy fractional elliptic equation. Filomat, 37(27), 9315–9326.
  20. Elomari, M., Melliani, S., & Chadli, L. S. (2017). Solution of intuitionistic fuzzy fractional. Annals of Fuzzy Mathematics and Informatics, 13(3), 379–391.
  21. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy fractional equation. Notes on Intuitionistic Fuzzy Sets, 21(4), 76–89.
  22. Mondal, S. P., & Roy, T. K. (2015). Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit. TWMS Journal of Applied and Engineering Mathematics, 5(1), 30–45.
  23. Mondal, S. P., & Roy, T. K. (2015). System of differential equation with initial value as triangular intuitionistic fuzzy number and its application. International Journal of Applied and Computational Mathematics, 1, 449–474.
  24. Oufkir, K., El Mfadel, A., Melliani, S., Elomari, M., & Sadiki, H. (2023). On fractional evolution equations with an extended ψ-fractional derivative. Filomat, 37(21), 7231–7240.
  25. Povstenko, Y. (2015). Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Cham: Springer International Publishing.
  26. Ullah, K., Mahmood, T., Ali, Z., & Jan, N. (2020). On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition. Complex & Intelligent Systems, 6, 15–27.
  27. Yager, R. R. (2013). Pythagorean fuzzy subsets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013, pp. 57–61.
  28. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.