Title of paper:
|
Solvability of an intuitionistic fuzzy fractional differential equation of second type
|
Author(s):
|
Hamid Sadiki
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
|
h.sadiki@usms.ma
|
Khadija Oufkir
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
|
oufkirkhadijabzou@gmail.com
|
Aziz El Ghazouani
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
|
aziz.elghazouani@usms.ma
|
M'hamed Elomari
|
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
|
m.elomari@usms.ma
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 4, pages 349–367
|
DOI:
|
https://doi.org/10.7546/nifs.2024.30.4.349-367
|
Download:
|
PDF (302 Kb, File info)
|
Abstract:
|
In this research, we provide certain novel requirements for the existence and uniqueness of fuzzy solutions for a type of non-linear intuitionistic fuzzy fractional equations with intuitionistic fuzzy initial conditions under the intuitionistic fuzzy fractional derivative of order [math]\displaystyle{ n \in (0,3) }[/math] in Caputo sense. The required findings are demonstrated by employing the Banach fixed point theorem, the intuitionistic fuzzy Laplace transform and the Mittag-Leffler function. An example is provided to demonstrate the reliability of our findings.
|
Keywords:
|
Intuitionistic fuzzy set of second type, Intuitionistic fuzzy number, Intuitionistic fuzzy fractional derivative of Caputo sense, Intuitionistic fuzzy Laplace transform, Banach fixed point theorem, Mittag-Leffler function.
|
AMS Classification:
|
26A33, 34A07, 34K37.
|
References:
|
- Agarwal, R. P., Lakshmikantham, V., & Nieto, J. J. (2010). On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 72(6), 2859–2862.
- Akram, M., Ihsan, T., & Allahviranloo, T. (2023). Solving Pythagorean fuzzy fractional differential equations using Laplace transform. Granular Computing, 8(3), 551–575.
- Akram, M., & Ihsan, T. (2023). Solving Pythagorean fuzzy partial fractional diffusion model using the Laplace and Fourier transforms. Granular Computing, 8(4), 689–707.
- Amir, F. I. A., El Ghazouani, A., & Melliani, S. (2024). Fuzzy Fractional Differential Equation Involving the Fuzzy Conformable Derivative. The Scientific World Journal, 2024, Article ID 993669 (11 pages).
- Arhrrabi, E., Elomari, M., Melliani, S., & Chadli, L. S. (2023). Fuzzy fractional boundary value problems with Hilfer fractional derivatives. Asia Pacific Journal of Mathematics, 10, Article ID 4.
- Arshad, S., & Lupulescu, V. (2011). On the fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 74(11), 3685–3693.
- Arshad, S., & Lupulescu, V. (2011). Fractional differential equation with the fuzzy initial condition. Electronic Journal of Differential Equations (EJDE), 2011(34), 1–8.
- Atanassov, K. T. (1989). Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Mathematical Foundations of Artificial Intelligence Seminar, Sofia, Preprint IM-MFAIS-1-89.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer PhysicaVerlag Heidelberg.
- Bede, B., & Gal, S. G. (2005). Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151(3), 581–599.
- El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2023). Existence and asymptotic behavior of non-linear hybrid functional differential equations including the fuzzy Caputo Nabla fractional difference. Mathematics in Engineering, Science & Aerospace (MESA), 14(3), 737–750.
- El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2024). Fuzzy neutral fractional integro-differential equation existence and stability results involving the Caputo fractional generalized Hukuhara derivative. Journal of Nonlinear, Complex and Data Science, 25(1), 53–78.
- El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2024). On the existence and uniqueness results for fuzzy fractional boundary value problem involving Caputo fractional derivative. Boletim da Sociedade Paranaense de Matematica, 42, 1–21.
- El Ghazouani, A., Amir, F. I. A., Elomari, M., & Melliani, S. (2025). On the existence and uniqueness of fuzzy mild solution of fractional evolution equations. Kragujevac Journal of Mathematics, 49(6), 949–966.
- El Ghazouani, A., Elomari, M. (2024). Solving fuzzy non-homogeneous wave equations via Laplace residual power series approach. New Mathematics and Natural Computation. DOI: 10.1142/S179300572650002X.
- El Ghazouani, A., Elomari, M., & Melliani, S. (2023). Solvability and GUH stability results of fuzzy nonlinear ABC-fractional coupled system. In: 9th International IFS and Contemporary Mathematics and Engineering Conference, (p. 20).
- El Ghazouani, A., Elomari, M., & Melliani, S. (2024). A semi-analytical solution approach for fuzzy fractional acoustic waves equations using the Atangana Baleanu Caputo fractional operator. Soft Computing, 28, 9307–9315.
- El Ghazouani, A., Elomari, M., Melliani, S. (2024). Existence and uniqueness results of fuzzy Hilfer fractional Langevin evolution equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 31(2), 133–147.
- El Ghazouani, A., Talhaoui, A., & Melliani, S. (2023). Existence and uniqueness results for a semilinear fuzzy fractional elliptic equation. Filomat, 37(27), 9315–9326.
- Elomari, M., Melliani, S., & Chadli, L. S. (2017). Solution of intuitionistic fuzzy fractional. Annals of Fuzzy Mathematics and Informatics, 13(3), 379–391.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy fractional equation. Notes on Intuitionistic Fuzzy Sets, 21(4), 76–89.
- Mondal, S. P., & Roy, T. K. (2015). Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit. TWMS Journal of Applied and Engineering Mathematics, 5(1), 30–45.
- Mondal, S. P., & Roy, T. K. (2015). System of differential equation with initial value as triangular intuitionistic fuzzy number and its application. International Journal of Applied and Computational Mathematics, 1, 449–474.
- Oufkir, K., El Mfadel, A., Melliani, S., Elomari, M., & Sadiki, H. (2023). On fractional evolution equations with an extended ψ-fractional derivative. Filomat, 37(21), 7231–7240.
- Povstenko, Y. (2015). Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Cham: Springer International Publishing.
- Ullah, K., Mahmood, T., Ali, Z., & Jan, N. (2020). On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition. Complex & Intelligent Systems, 6, 15–27.
- Yager, R. R. (2013). Pythagorean fuzzy subsets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013, pp. 57–61.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|