As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Intuitionistic fuzzy Nakayama’s Lemma

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/30/4/309-322)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/4/309-322
Title of paper: Intuitionistic fuzzy Nakayama’s Lemma
Author(s):
S. Achik
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
sofyanebenabdou@gmail.com
I. Bakhadach
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
i.bakhadach@usms.ma
M. Oukessou
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
ouk_mohamed@yahoo.fr
S. Melliani
Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco
s.melliani@usms.ma
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 4, pages 309–322
DOI: https://doi.org/10.7546/nifs.2024.30.4.309-322
Download:  PDF (230  Kb, File info)
Abstract: Drawing upon Atanassov's pioneering work on intuitionistic fuzzy sets [1], this paper presents the concept of intuitionistic fuzzy Nakayama's Lemma, offering a natural extension to Rajesh Kumar et al.'s fuzzy Nakayama's Lemma [8]. Additionally, we define the intuitionistic fuzzy Jacobson radical and explore the product of an intuitionistic fuzzy ideal and intuitionistic fuzzy submodule. Finally, we conclude by introducing the sum of two intuitionistic fuzzy submodules.
Keywords: Intuitionistic fuzzy ideal, Intuitionistic fuzzy submodule, Intuitionistic fuzzy Jacobson radical, Intuitionistic fuzzy Nakayama's Lemma.
AMS Classification: 03F55, 05C25, 13B02.
References:
  1. Atanassov, K., & Stoeva, S. (1983). Intuitionistic fuzzy sets. Polish Symposium on Interval and Fuzzy Mathematics, Poznan, 23–26.
  2. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  4. Atanassova, L. (2007). On intuitionistic fuzzy versions of L. Zadeh's extension principle. Notes on Intuitionistic Fuzzy Sets, 13(3), 33–36.
  5. Azumaya, G. (1951). On maximally central algebras. Nagoya Mathematical Journal, 2, 119–150.
  6. Banerjee, B., & Basnet, D. K. (2003). Intuitionistic fuzzy subrings and ideals. Journal of Fuzzy Mathematics, 11, 139–155.
  7. Isaac, P., & Pearly John, P. (2011). On intuitionistic fuzzy submodules of a module. International Journal of Mathematical Sciences and Applications, 1, 1447–1454.
  8. Kumar, R., Bhambri S. K., & Kumar, P. (1995). Fuzzy submodules: Some analogues and deviations. Fuzzy Sets and Systems, 70(1), 125–130.
  9. Nakayama, T. (1951). A remark on finitely generated modules. Nagoya Mathematical Journal, 3, 139–140.
  10. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338—353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.