As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:On intuitionistic fuzzy chained modules

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/30/4/297-308)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/4/297-308
Title of paper: On intuitionistic fuzzy chained modules
Author(s):
Poonam Kumar Sharma
Post-Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 4, pages 297–308
DOI: https://doi.org/10.7546/nifs.2024.30.4.297-308
Download:  PDF (292  Kb, File info)
Abstract: In this paper, we introduce and explore some novel concepts within the frame work of intuitionistic fuzzy module theory. First, we define the notion of an intuitionistic fuzzy chained module as a generalisation of chained modules, establishing it foundational properties. We then characterise intuitionistic fuzzy chained modules, in terms of its level-cut submodules. In addition to this, we describe an intuitionistic fuzzy chained module in terms of its intuitionistic fuzzy cyclic submodules. Finally, we demonstrate that under specific conditions, the intuitionistic fuzzy multiplication module is an intuitionistic fuzzy chained module.
Keywords: Intuitionistic fuzzy chained module, Intuitionistic fuzzy (cyclic) submodule, Intuitionistic fuzzy multiplication module, Intuitionistic fuzzy (prime) ideal.
AMS Classification: 54C50, 03F55, 16D10, 08A72, 16N80.
References:
  1. Anderson, F. W., & Fuller, K.R. (1992). Rings and Categories of Modules. Graduate Texts in Mathematics, No. 13, Springer-Verlag, New York - Heidelberg - Berlin.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg.
  4. Bakhadach, I., Melliani, S., Oukessou, M., & Chadli, S. L. (2016). Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring. Notes on Intuitionistic Fuzzy Sets, 22(2), 59–63.
  5. Basnet, D.K. (2011). Topics in Intuitionistic Fuzzy Algebra. Lambert Academic Publishing. ISBN: 978-3-8443-9147-3
  6. Baupradist, S., & Hai, H. D. (2022). Intuitionistic fuzzy uniform modules. ICIC Express Letters, 16(11), 1223–1227.
  7. Biswas, R. (1989). Intuitionistic fuzzy subgroup. Mathematical Forum, X, 37–46.
  8. Davvaz, B., Dudek, W.A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hv-submodules. Information Sciences, 176, 285-300.
  9. Hur, K., Kang, H. K., & Song, H.K. (2003). Intuitionistic fuzzy subgroup and subrings. Honam Mathematical Journal, 25(1), 19-41.
  10. Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic fuzzy ideals of a ring. Journal of the Korea Society of Mathematical Education, Series B., 12(3), 193–209.
  11. Isaac, P., & John, P.P. (2011). On intuitionistic fuzzy submodules of a module. International Journal of Mathematical Sciences and Applications, 1(3), 1447–1454.
  12. John, P.P., & Isaac, P. (2013). IFSM’s generated by IFS’s. International Journal of Mathematics Research, 5(3), 333–341.
  13. Mohammad, A.A., (1997). Chained Modules. M.Sc. Thesis, University of Baghdad.
  14. Sharma, P. K. (2011). (α, β)-cut of intuitionistic fuzzy modules. International Journal of Mathematical Sciences and Applications, 1(3), 1489–1492.
  15. Sharma, P. K., & Kaur, G. (2016). Intuitionistic fuzzy superfluous submodule. Notes on Intuitionistic Fuzzy Sets, 22(3), 34–46.
  16. Sharma, P. K., & Kaur, G. (2017). Intuitionistic fuzzy prime spectrum of a ring. CiiT International Journal of Fuzzy Systems, 9(8), 167–175.
  17. Sharma, P. K., & Kaur, G. (2017). Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module. International Journal of Computer Science and Information Technology (IJCSIT), 9(4), 1–15.
  18. Sharma, P. K., & Kaur, G. (2018). On intuitionistic fuzzy prime submodules. Notes on Intuitionistic Fuzzy Sets, 24(4), 97–112.
  19. Sharma, P. K. (2022). On intuitionistic fuzzy multiplication modules. Annals of Fuzzy Mathematics and Informatics, 23(3), 295–309.
  20. Sharma, P. K. (2023). On intuitionistic L-fuzzy socle of modules. Notes on Intuitionistic Fuzzy Sets, 29(1), 65–73.
  21. Uddin, M. A. (2016). A study on uniserial and serial rings and modules, M.Phil. Dissertation, Bangladesh University of Engineering and Technology, Dhaka.
  22. Wisbauer, R. (1991). Foundations of Modules and Ring Theory, Gordon and Breach, London, Tokyo.
  23. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338—353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.